首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A connected graph is said to be unoriented Laplacian maximizing if the spectral radius of its unoriented Laplacian matrix attains the maximum among all connected graphs with the same number of vertices and the same number of edges. A graph is said to be threshold (maximal) if its degree sequence is not majorized by the degree sequence of any other graph (and, in addition, the graph is connected). It is proved that an unoriented Laplacian maximizing graph is maximal and also that there are precisely two unoriented Laplacian maximizing graphs of a given order and with nullity 3. Our treatment depends on the following known characterization: a graph G is threshold (maximal) if and only if for every pair of vertices u,v of G, the sets N(u)?{v},N(v)?{u}, where N(u) denotes the neighbor set of u in G, are comparable with respect to the inclusion relation (and, in addition, the graph is connected). A conjecture about graphs that maximize the unoriented Laplacian matrix among all graphs with the same number of vertices and the same number of edges is also posed.  相似文献   

2.
A shortest path connecting two vertices u and v is called a u-v geodesic. The distance between u and v in a graph G, denoted by dG(u,v), is the number of edges in a u-v geodesic. A graph G with n vertices is panconnected if, for each pair of vertices u,vV(G) and for each integer k with dG(u,v)?k?n-1, there is a path of length k in G that connects u and v. A graph G with n vertices is geodesic-pancyclic if, for each pair of vertices u,vV(G), every u-v geodesic lies on every cycle of length k satisfying max{2dG(u,v),3}?k?n. In this paper, we study sufficient conditions of geodesic-pancyclic graphs. In particular, we show that most of the known sufficient conditions of panconnected graphs can be applied to geodesic-pancyclic graphs.  相似文献   

3.
Let D be an acyclic digraph. The competition graph of D is a graph which has the same vertex set as D and has an edge between u and v if and only if there exists a vertex x in D such that (u,x) and (v,x) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices.A hole of a graph is an induced cycle of length at least four. Kim (2005) [8] conjectured that the competition number of a graph with h holes is at most h+1. Recently, Li and Chang (2009) [11] showed that the conjecture is true when the holes are independent. In this paper, we show that the conjecture is true though the holes are not independent but mutually edge-disjoint.  相似文献   

4.
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uvE(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by x Aa (G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures.  相似文献   

5.
For a chordal graph G=(V,E), we study the problem of whether a new vertex uV and a given set of edges between u and vertices in V can be added to G so that the resulting graph remains chordal. We show how to resolve this efficiently, and at the same time, if the answer is no, specify a maximal subset of the proposed edges that can be added along with u, or conversely, a minimal set of extra edges that can be added in addition to the given set, so that the resulting graph is chordal. In order to do this, we give a new characterization of chordal graphs and, for each potential new edge uv, a characterization of the set of edges incident to u that also must be added to G along with uv. We propose a data structure that can compute and add each such set in O(n) time. Based on these results, we present an algorithm that computes both a minimal triangulation and a maximal chordal subgraph of an arbitrary input graph in O(nm) time, using a totally new vertex incremental approach. In contrast to previous algorithms, our process is on-line in that each new vertex is added without reconsidering any choice made at previous steps, and without requiring any knowledge of the vertices that might be added subsequently.  相似文献   

6.
In section 1 some lower bounds are given for the maximal number of edges ofa (p ? 1)- colorable partial graph. Among others we show that a graph on n vertices with m edges has a (p?1)-colorable partial graph with at least mTn.p/(n2) edges, where Tn.p denotes the so called Turán number. These results are used to obtain upper bounds for special edge covering numbers of graphs. In Section 2 we prove the following theorem: If G is a simple graph and μ is the maximal cardinality of a triangle-free edge set of G, then the edges of G can be covered by μ triangles and edges. In Section 3 related questions are examined.  相似文献   

7.
A graph G is diameter k-critical if the graph has diameter k and the deletion of any edge increases its diameter. We show that every diameter 2-critical graph on v vertices has (i) at most 0.27v2 edges, and (ii) average edge degree at most 65v. We also make a conjecture on the maximal number of edges in a diameter k-critical graph.  相似文献   

8.
The fractional perfect b-matching polytope of an undirected graph G is the polytope of all assignments of nonnegative real numbers to the edges of G such that the sum of the numbers over all edges incident to any vertex v   is a prescribed nonnegative number bvbv. General theorems which provide conditions for nonemptiness, give a formula for the dimension, and characterize the vertices, edges and face lattices of such polytopes are obtained. Many of these results are expressed in terms of certain spanning subgraphs of G which are associated with subsets or elements of the polytope. For example, it is shown that an element u of the fractional perfect b-matching polytope of G is a vertex of the polytope if and only if each component of the graph of u either is acyclic or else contains exactly one cycle with that cycle having odd length, where the graph of u is defined to be the spanning subgraph of G whose edges are those at which u is positive.  相似文献   

9.
The Wiener index of a graph G is defined as W(G)=∑ u,v d G (u,v), where d G (u,v) is the distance between u and v in G and the sum goes over all the pairs of vertices. In this paper, we first present the 6 graphs with the first to the sixth smallest Wiener index among all graphs with n vertices and k cut edges and containing a complete subgraph of order nk; and then we construct a graph with its Wiener index no less than some integer among all graphs with n vertices and k cut edges.  相似文献   

10.
A total edge irregular k-labelling ν of a graph G is a labelling of the vertices and edges of G with labels from the set {1,…,k} in such a way that for any two different edges e and f their weights φ(f) and φ(e) are distinct. Here, the weight of an edge g=uv is φ(g)=ν(g)+ν(u)+ν(v), i. e. the sum of the label of g and the labels of vertices u and v. The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity strength of G.We have determined the exact value of the total edge irregularity strength of complete graphs and complete bipartite graphs.  相似文献   

11.
Let G be a connected, undirected graph without loops and without multiple edges. For a pair of distinct vertices u and v, a minimum {u, v}-separating set is a smallest set of edges in G whose removal disconnects u and v. The edge connectivity of G, denoted λ(G), is defined to be the minimum cardinality of a minimum {u, v}-separating set as u and v range over all pairs of distinct vertices in G. We introduce and investigate the eavesdropping number, denoted ε(G), which is defined to be the maximum cardinality of a minimum {u, v}-separating set as u and v range over all pairs of distinct vertices in G. Results are presented for regular graphs and maximally locally connected graphs, as well as for a number of common families of graphs.  相似文献   

12.
For a given graph G its Szeged weighting is defined by w(e)=nu(e)nv(e), where e=uv is an edge of G,nu(e) is the number of vertices of G closer to u than to v, and nv(e) is defined analogously. The adjacency matrix of a graph weighted in this way is called its Szeged matrix. In this paper we determine the spectra of Szeged matrices and their Laplacians for several families of graphs. We also present sharp upper and lower bounds on the eigenvalues of Szeged matrices of graphs.  相似文献   

13.
Given a graph G, the m-step graph of G, denoted by S m (G), has the same vertex set as G and an edge between two distinct vertices u and v if there is a walk of length m from u to v. The line graph of G, denoted by L(G), is a graph such that the vertex set of L(G) is the edge set of G and two vertices u and v of L(G) are adjacent if the edges corresponding to u and v share a common end vertex in G. We characterize connected graphs G such that S m (G) and L(G) are isomorphic.  相似文献   

14.
The structure of an acyclic directed graph with n vertices and m edges, maximizing the number of distinct paths between two given vertices, is studied. In previous work it was shown that there exists such a graph containing a Hamiltonian path joining the two given vertices, thus uniquely ordering the vertices. It was further shown that such a graph contains k ? 1 full levels (an edge (i, j) belongs to level t = j ?i) and some edges of level k—a deficient k-generalized Fibonacci graph. We investigate the distribution of the edges in level 3 in a deficient 3-generalized Fibonacci graph, and develop tools that might be useful in extending the results to higher levels.  相似文献   

15.
Let G be a connected (di)graph. A vertex w is said to strongly resolve a pair u,v of vertices of G if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set W of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of W. The smallest cardinality of a strong resolving set for G is called the strong dimension of G. It is shown that the problem of finding the strong dimension of a connected graph can be transformed to the problem of finding the vertex covering number of a graph. Moreover, it is shown that computing this invariant is NP-hard. Related invariants for directed graphs are defined and studied.  相似文献   

16.
The codiameter of a graph is defined as the minimum, taken over all pairs of vertices u and v in the graph, of the maximum length of a (u,v)-path. A result of Fan [Long cycles and the codiameter of a graph, I, J. Combin. Theory Ser. B 49 (1990) 151-180.] is that, for an integer c?3, if G is a 2-connected graph on n vertices with more than ((c+1)/2)(n-2)+1 edges, the codiameter of G is at least c. The result is best possible when n-2 is divisible by c-2. In this paper, we shall show that the bound ((c+1)/2)(n-2)+1 can be decreased when n-2 is not divisible by c-2.  相似文献   

17.
A Steiner tree for a set S of vertices in a connected graph G is a connected subgraph of G with a smallest number of edges that contains S. The Steiner interval I(S) of S is the union of all the vertices of G that belong to some Steiner tree for S. If S={u,v}, then I(S)=I[u,v] is called the interval between u and v and consists of all vertices that lie on some shortest u-v path in G. The smallest cardinality of a set S of vertices such that ?u,vSI[u,v]=V(G) is called the geodetic number and is denoted by g(G). The smallest cardinality of a set S of vertices of G such that I(S)=V(G) is called the Steiner geodetic number of G and is denoted by sg(G). We show that for distance-hereditary graphs g(G)?sg(G) but that g(G)/sg(G) can be arbitrarily large if G is not distance hereditary. An efficient algorithm for finding the Steiner interval for a set of vertices in a distance-hereditary graph is described and it is shown how contour vertices can be used in developing an efficient algorithm for finding the Steiner geodetic number of a distance-hereditary graph.  相似文献   

18.
The notion of a competition graph was introduced by Cohen in 1968. The competition graph C(D) of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. In 1978, Roberts defined the competition number k(G) of a graph G as the minimum number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number. In 1982, Opsut gave two lower bounds for the competition number of a graph. In this paper, we give a generalization of these two lower bounds for the competition number of a graph.  相似文献   

19.
《Discrete Mathematics》2002,231(1-3):211-225
The eccentricity e(v) of v is the distance to a farthest vertex from v. The diameter diam(G) is the maximum eccentricity among the vertices of G. The contraction of edge e=uv in G consists of removing e and identifying u and v as a single new vertex w, where w is adjacent to any vertex that at least one of u or v were adjacent to. The graph resulting from contracting edge e is denoted G/e. An edge e is diameter-essential if diam(G/e)<diam(G). Let c(G) denote the number of diameter-essential edges in graph G. In this paper, we study existence and extremal problems for c(G); determine bounds on c(G) in terms of diameter and order; and obtain characterizations of graphs achieving extreme values of c(G).  相似文献   

20.
《Discrete Applied Mathematics》2002,116(1-2):115-126
For vertices u and v in an oriented graph D, the closed interval I[u,v] consists of u and v together with all vertices lying in a uv geodesic or vu geodesic in D. For SV(D), I[S] is the union of all closed intervals I[u,v] with u,vS. A set S is convex if I[S]=S. The convexity number con(D) is the maximum cardinality of a proper convex set of V(D). The nontrivial connected oriented graphs of order n with convexity number n−1 are characterized. It is shown that there is no connected oriented graph of order at least 4 with convexity number 2 and that every pair k, n of integers with 1⩽kn−1 and k≠2 is realizable as the convexity number and order, respectively, of some connected oriented graph. For a nontrivial connected graph G, the lower orientable convexity number con(G) is the minimum convexity number among all orientations of G and the upper orientable convexity number con+(G) is the maximum such convexity number. It is shown that con+(G)=n−1 for every graph G of order n⩾2. The lower orientable convexity numbers of some well-known graphs are determined, with special attention given to outerplanar graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号