首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new strategy has been developed for the oxidant‐ and base‐free dehydrogenative coupling of N‐heterocycles at mild conditions. Under the action of an iridium catalyst, N‐heterocycles undergo multiple sp3 C H activation steps, generating a nucleophilic enamine that reacts in situ with various electrophiles to give highly functionalized products. The dehydrogenative coupling can be cascaded with Friedel–Crafts addition, resulting in a double functionalization of the N‐heterocycles.  相似文献   

2.
A new strategy has been developed for the oxidant‐ and base‐free dehydrogenative coupling of N‐heterocycles at mild conditions. Under the action of an iridium catalyst, N‐heterocycles undergo multiple sp3 C? H activation steps, generating a nucleophilic enamine that reacts in situ with various electrophiles to give highly functionalized products. The dehydrogenative coupling can be cascaded with Friedel–Crafts addition, resulting in a double functionalization of the N‐heterocycles.  相似文献   

3.
Herein we describe a mild method for the dual C(sp3)?H bond functionalization of saturated nitrogen‐containing heterocycles through a sequential visible‐light photocatalyzed dehydrogenation/[2+2] cycloaddition procedure. As a complementary approach to the well‐established use of iminium ion and α‐amino radical intermediates, the elusive cyclic enamine intermediates were effectively generated by photoredox catalysis under mild conditions and efficiently captured by acetylene esters to form a wide array of bicyclic amino acid derivatives, thus enabling the simultaneous functionalization of two vicinal C(sp3)?H bonds.  相似文献   

4.
Phosphorus‐containing heterocycles have evolved from laboratory curiosities to functional components, such as ligands in catalytically active metal complexes or molecular constituents in electronic devices. The straightforward synthesis of functionalized heterocycles on a larger scale remains a challenge. Herein, we report the use of the phosphaethynolate (OCP)? anion as a building block for various sterically unprotected and functionalized hydroxy substituted phosphorus heterocycles. Because the resulting heterocycles are themselves anions, they are building blocks in their own right and allow further facile functionalization. This property may be of interest in coordination chemistry and material science.  相似文献   

5.
Distal C?H bond functionalization of heterocycles remained extremely challenging with covalently attached directing groups (DG). Lack of proper site for DG attachment and inherent catalyst poisoning by heterocycles demand alternate routes for site selective functionalization of their distal C?H bonds. Utilizing non‐productive coordinating property to hold the heterocycle into the cavity of a template system in a host–guest manner, we report distal C?H alkylation (C‐5 of quinoline and thiazole, C‐7 of benzothiazole and benzoxazole) of heterocycles. Upon complexation with heterocyclic substrate, nitrile DG in template directs the metal catalyst towards close vicinity of the specific distal C?H bond of the heterocycles. Our hypothesized pathway has been supported by various X‐ray crystallographically characterized intermediates.  相似文献   

6.
Despite recent advances, reactivity and site‐selectivity remain significant obstacles for the practical application of C(sp3)?H bond functionalization methods. Here, we describe a system that combines a salicylic‐aldehyde‐derived L,X‐type directing group with an electron‐deficient 2‐pyridone ligand to enable the β‐methylene C(sp3)?H arylation of aliphatic alcohols, which has not been possible previously. Notably, this protocol is compatible with heterocycles embedded in both alcohol substrates and aryl coupling partners. A site‐ and stereo‐specific annulation of dihydrocholesterol and the synthesis of a key intermediate of englitazone illustrate the practicality of this method.  相似文献   

7.
Enamides are stable enamine surrogates and provide key intermediates for the synthesis of small but complex nitrogen‐containing compounds. Metal‐catalyzed regioselective functionalization of enamides provides a rapid method to synthesize useful nitrogen containing heterocycles. This review discloses the recent progress made in the development of the C?H functionalization of enamides involving efficient and atom‐economical routes. Syntheses of different heterocycles are classified based on the site reactivity of enamides and key mechanistic insights are given for each transformation.  相似文献   

8.
The first catalytic formal [5+4] cycloaddition to prepare nine‐membered heterocycles is presented. Under palladium catalysis, the reaction of N‐tosyl azadienes and substituted vinylethylene carbonates (VECs) proceeds smoothly to produce benzofuran‐fused heterocycles in uniformly high efficiency. Highly diastereoselective functionalization of the nine‐membered heterocycles through peripheral attack is also demonstrated.  相似文献   

9.
Nucleophilic radical additions at innately electrophilic C(sp2) centers are perfectly suited for the direct functionalization of heterocycles. Using bench stable and commercially available alkyl oxamate and oxamic acid derivatives in combination with photoredox catalysis, a direct carbamoylation of heterocycles yielding amide functionalized pharmacophores in a single step is reported. The reaction conditions reported are compatible with structurally complex heterocyclic substrates of pharmaceutical interest. Notably, derivatives containing functional groups incompatible with standard amidation reactions, such as carboxylic acids and unprotected amines, were found to be amenable to this reaction paradigm.  相似文献   

10.
RhIII‐catalyzed N‐nitroso‐directed C?H addition to ethyl 2‐oxoacetate allows subsequent construction of indazoles, a privileged heterocycle scaffold in synthetic chemistry, through the exploitation of reactivity between the directing group and installed group. The formal [2+2] cycloaddition/fragmentation reaction pathway identified herein, a unique reactivity pattern hitherto elusive for the N‐nitroso group, emphasizes the importance of forward reactivity analysis in the development of useful C?H functionalization‐based synthetic tools. The synthetic utility of the protocol is demonstrated with the synthesis of a tricyclic‐fused ring system. The diversity of covalent linkages available for the nitroso group should enable the extension of the genre of reactivity reported herein to the synthesis of other types of heterocycles.  相似文献   

11.
Electrochemical reactions are shown to be effective for the C? H functionalization of a number of heterocyclic substrates that are recalcitrant to conventional peroxide radical initiation conditions. Monitoring reaction progress under electrochemical conditions provides mechanistic insight into the C? H functionalization of a series of heterocycles of interest in medicinal chemistry.  相似文献   

12.
Direct amination of C(sp3)?H bonds is of broad interest in the realm of C?H functionalization because of the prevalence of nitrogen heterocycles and amines in pharmaceuticals and natural products. Reported here is a combined electrochemical/photochemical method for dehydrogenative C(sp3)?H/N?H coupling that exhibits good reactivity with both sp2 and sp3 N?H bonds. The results show how use of iodide as an electrochemical mediator, in combination with light‐induced cleavage of intermediate N?I bonds, enables the electrochemical process to proceed at low electrode potentials. This approach significantly improves the functional‐group compatibility of electrochemical C?H amination, for example, tolerating electron‐rich aromatic groups that undergo deleterious side reactions in the presence of high electrode potentials.  相似文献   

13.
Cyclopropanes fused to pyrrolidines are important structural features found in a number of marketed drugs and development candidates. Typically, their synthesis involves the cyclopropanation of a dihydropyrrole precursor. Reported herein is a complementary approach which employs a palladium(0)‐catalyzed C? H functionalization of an achiral cyclopropane to close the pyrrolidine ring in an enantioselective manner. In contrast to aryl–aryl couplings, palladium(0)‐catalyzed C? H functionalizations involving the formation of C(sp3)? C(sp3) bonds of saturated heterocycles are very scarce. The presented strategy yields cyclopropane‐fused γ‐lactams from chloroacetamide substrates. A bulky Taddol phosphonite ligand in combination with adamantane‐1‐carboxylic acid as a cocatalyst provides the γ‐lactams in excellent yields and enantioselectivities.  相似文献   

14.
Nitrogen‐containing heterocycles have found remarkable applications in natural product research, material sciences, and pharmaceuticals. Although the synthesis of this interesting class of compounds attracted the interest of generations of organic chemists, simple and straightforward assembly methods based on transition‐metal catalysis have regularly been elusive. The recent advancements in the development of C?H functionalization have helped in accomplishing the synthesis of a variety of complex heterocycles from simple precursors. This Focus Review summarizes the recent advances in one particular field: the copper‐catalyzed C?N bond formation reactions via C?H bond functionalization to furnish a comprehensive range of nitrogen heterocycles. Applicability and synthetic feasibility of a particular reaction represent major requirements for the inclusion in this review.  相似文献   

15.
The first syntheses of privileged [5,6]‐bicyclic heterocycles, with ring‐junction nitrogen atoms, by transition metal catalyzed C−H functionalization of C‐alkenyl azoles is disclosed. Several reactions are applied to alkenyl imidazoles, pyrazoles, and triazoles to provide products with nitrogen incorporated at different sites. Alkyne and diazoketone coupling partners give azolopyridines with various substitution patterns. In addition, 1,4,2‐dioxazolone coupling partners yield azolopyrimidines. Furthermore, the mechanisms for the reactions are discussed and the utility of the developed approach is demonstrated by iterative application of C−H functionalization for the rapid synthesis of a patented drug candidate.  相似文献   

16.
Abstract

2-Silylated five-membered heterocycles can be easily accessed through reaction of bromo(methoxy)methylsilane and dithiols, mercapto amines, and mercapto alcohols. Further reaction of the obtained silylated heterocycles with electrophiles under fluoride ion conditions afford an easy functionalization of such molecules.  相似文献   

17.
O,ω‐Unsaturated N‐tosyl alkoxyamines undergo unexpected RhIII‐catalyzed intramolecular cyclization by oxyamination to produce oxygen‐containing heterocycles. Mechanistic studies show that an aziridine intermediate seems to be responsible for the formation of the heterocycles, possibly via a RhV species.  相似文献   

18.
Despite recent advances, reactivity and site-selectivity remain significant obstacles for the practical application of C(sp3)−H bond functionalization methods. Here, we describe a system that combines a salicylic-aldehyde-derived L,X-type directing group with an electron-deficient 2-pyridone ligand to enable the β-methylene C(sp3)−H arylation of aliphatic alcohols, which has not been possible previously. Notably, this protocol is compatible with heterocycles embedded in both alcohol substrates and aryl coupling partners. A site- and stereo-specific annulation of dihydrocholesterol and the synthesis of a key intermediate of englitazone illustrate the practicality of this method.  相似文献   

19.
The functionalization of internal olefins has been a challenging task in organic synthesis. Efficient CuII‐catalyzed trifluoromethylation of internal olefins, that is, α‐oxoketene dithioacetals, has been achieved by using Cu(OH)2 as a catalyst and TMSCF3 as a trifluoromethylating reagent. The push–pull effect from the polarized olefin substrates facilitates the internal olefinic C?H trifluoromethylation. Cyclic and acyclic dithioalkyl α‐oxoketene acetals were used as the substrates and various substituents were tolerated. The internal olefinic C?H bond cleavage was not involved in the rate‐determining step, and a mechanism that involves radicals is proposed based on a TEMPO‐quenching experiment of the trifluoromethylation reaction. Further derivatization of the resultant CF3 olefins led to multifunctionalized tetrasubstituted CF3 olefins and trifluoromethylated N‐heterocycles.  相似文献   

20.
Isoxazolinones are biologically and synthetically interesting densely functionalized heterocycles, which for a long time were not accessible in enantioenriched form by asymmetric catalysis. Next to the deficit of enantioselective methods, the functionalization of isoxazolinones is often plagued by regioselectivity issues due to the competition of various nucleophilic centers within the heterocycles. We report the first regio‐ and enantioselective C‐allylations of isoxazolinones. These occur with high regioselectivity in favor of the linear allylation products, although Ir phosphoramidite catalysts were used, which commonly results in branched isomers. Our studies suggest that this outcome is the result of a reaction cascade via an initial regio‐ and enantioselective N‐allylation to provide a branched allyl intermediate, followed by a spontaneous [3,3]‐rearrangement resulting in chirality transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号