首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids are modeled by the Carreau rheological model. An improved level set approach for computing the incompressible two-phase flow with deformable free interface is used. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with large density (ρ1/ρg up to 103) and high viscosity (η1/ηg up to 104). The comparison of the experimental measurements of terminal bubble shape and velocity with the computational results is satisfactory. It is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and velocity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a result of the rather stagnant flow behind the bubble. The numerical results provide the basis for further investigations, such as the numerical simulation of viscoelastic fluids.  相似文献   

2.
The dynamical processes of a Newtonian spherical drop rising freely through shear-thinning fluids expressed by the generalized Cross-Carreau (Carreau–Yasuda) model were considered experimentally and computationally. The local effects of shear-thinning on the drop motion, which are hard to evaluate from an experimental approach, are clearly revealed by the numerical results. The relation between the drop motion and the change in viscosity is clearly indicated and considered in detail for the cases in which the non-Newtonian fluids are highly and weakly pseudoplastic. In addition, the modified Reynolds and Morton numbers are discussed in order to describe the drop or bubble free motion in shear-thinning fluids using a more convenient and practical form.  相似文献   

3.
A study has been made of the motion of long bubbles in inclined pipes containing viscous Newtonian and non-Newtonian liquids. A semi-theoretical expression for the rise velocity of air bubbles in water is derived on the hypothesis that the dominant factor is the momentum exchange of the bubble underflow, i.e. the bubble nose shape. The correlation calls on empirical inputs from established literature on bubble rise speeds at high Reynolds number. The effects of increasing Newtonian viscosity are analysed with reference to the momentum exchange and it is shown how viscosity reduces the inclination dependence of the bubble Froude number. Results from an experimental survey in seven different non-Newtonian liquids in three different diameter pipes are presented. These data are correlated so as to decouple the effects of surface tension and viscosity. An empirical relation is proposed for the effective shear rate in the fluid travelling around the bubble nose. Our correlation is compared to literature data from a broad range of Reynolds numbers with excellent agreement except at shallow angles.  相似文献   

4.
利用电场控制气泡形态及运动,强化气液相间传热传质是电流体动力学的重要研究内容之一. 然而目前多数研究集中在非电场下的气泡动力学上,对于电场下的气泡行为特性及电场的作用机制仍需开展深入研究. 本研究对电场作用下单个气泡在流体中上升过程的动力学行为进行了数值模拟研究. 在建立二维模型的基础上求解电场方程与Navier-Stokes方程,并采用水平集方法捕捉了上升气泡的位置及形状. 模拟结果的准确性与有效性通过与前人实验和数值结果进行对比得到了验证. 通过改变雷诺数、邦德数和电邦德数等不同参数研究了电场下液体黏度、表面张力和电场力对气泡运动变形的影响. 计算结果表明,电场对气泡的动态特性有显著影响. 非电场情况下液体黏度和表面张力较大时气泡基本维持球状,反之气泡发生变形并逐步达到稳定状态. 此外,电场作用使气泡在初始上升阶段发生剧烈形变,随着不断上升,气泡形变程度不断减小,且气泡的上升速度和长径比均出现振荡. 垂直电场使气泡的上升速度有较大的提高,且随着电邦德数的增大,难以达到相对稳定的状态.   相似文献   

5.
Multiphase flows are critical components of many physical systems; however, numerical models of multiphase flows with large parameter gradients can be challenging. Here, two different numerical methods, volume of fluid (VOF) and smoothed particle hydrodynamics (SPH), are used to model the buoyant rise of isolated gas bubbles through quiescent fluids for a range of Bond and Reynolds numbers. The VOF is an Eulerian grid–based method, whereas the SPH is Lagrangian and mesh free. Each method has unique strengths and weaknesses, and a comparison of the two approaches as applied to multiphase phenomena has not previously been performed. The VOF and SPH simulations are compared, verified, and validated. Results using two-dimensional VOF and SPH simulations are similar to each other and are able to reproduce numerical benchmarks and experimental results for sufficiently large Morton and Reynolds numbers. It is also shown that at low Reynolds numbers, the two methods, SPH and VOF, diverge in the transient regime of the bubble rise. Regimes that require simulations capable of representing three-dimensional drag are identified as well as regimes in which results from VOF and SPH diverge.  相似文献   

6.
可压缩流场中气泡脉动数值模拟   总被引:6,自引:3,他引:3  
在应用边界元方法对气泡动力学的研究中, 绝大多数模型是建立在不压缩势流理论基础之上, 针对可压缩流场中气泡运动特性的研究很少. 从波动方程出发, 分别在气泡运动前期和后期对波动方程进行简化, 得到气泡运动局部和全局简化方程, 采用双渐进方法对简化方程进行匹配, 提出了考虑流场可压缩性的非球状气泡运动模型. 该模型的计算结果与Prospertti 等的解析结果吻合很好, 气泡脉动最大半径和内部最大压力随气泡脉动逐渐减小. 基于该模型对比了自由场中药包爆炸考虑可压缩性与不考虑可压缩性的计算结果, 发现考虑可压缩性气泡射流速度较小, 随后基于该模型计算了刚性边界下气泡的运动特性.  相似文献   

7.
 A comprehensive experimental study of the volumetric transfer coefficient k L a with Newtonian and non-Newtonian fluids in bubble columns using CO2 as gas phase is the objective of this work. The evaluation of the hydrodynamic characteristics of the bubble columns and delineated the different hydrodynamic regimes considering column geometry, gas flow, liquid height and type of fluid (Newtonian and non-Newtonian) suggest a general applicability of the proposed model. An explanation about of the k L a values in non-Newtonian fluid is offered take into account shear rate, column geometry, viscosity and results reported in the literature previously. Received on 31 July 1999  相似文献   

8.
A numerical simulation was conducted to study the effect of pressure on bubble dynamics in a gas–solid fluidized bed. The gas flow was modeled using the continuum theory and the solid phase, by the discrete element method (DEM). To validate the simulation results, calculated local pressure fluctuations were compared with corresponding experimental data of 1-mm polyethylene particles. It was shown that the model successfully predicts the hydrodynamic features of the fluidized bed as observed in the experiments. Influence of pressure on bubble rise characteristics such as bubble rise path, bubble stability, average bubbles diameter and bubble velocity through the bed was investigated. The simulation results are in conformity with current hydrodynamic theories and concepts for fluidized beds at high pressures. The results show further that elevated pressure reduces bubble growth, velocity and stability and enhances bubble gyration through the bed, leading to change in bed flow structure.  相似文献   

9.
This paper presents a study to describe the behaviour of a non-equilibrium bubble in a fluid (Fluid 1) that is in contact with another fluid (Fluid 2). Fluid 2 is assumed to incorporate some elastic properties, which are modelled through a pressure term at the fluid–fluid interface. The Laplace equation is assumed to be valid in both fluids and the boundary integral method is employed to simulate the dynamics of the bubble and the fluid–fluid interface. Interesting characteristic phenomena concerning bubble oscillations and the deformation of the fluid–fluid interface are studied for a range of parameters (distance from the fluid–fluid interface, density ratios of the two fluids and elastic properties of Fluid 2). Some of the phenomena observed are jet formation in the bubble, bubble splitting, a ring bubble separating from the main bubble, mushroom-shaped bubbles and the dynamic elevation of the elastic interface. Most of these phenomena are only observed when Fluid 2 possesses some elastic properties (besides the usual formation of a high speed liquid jet). Comparisons with experimental observations confirm the validity of our simulations.  相似文献   

10.
In this research, the co-axial coalescence of a pair of gas bubbles rising in a viscous liquid column under the effects of an external uniform magnetic field is simulated numerically. Considered fluids are dielectric, and applied magnetic field is uniform. Effects of different strengths of magnetic field on the interaction of in-line rising bubbles and coalescence between them were investigated. For numerical modeling of the problem, a computer code was developed to solve the governing equations which are continuity, Navier–Stokes equation, magnetic field equation and level set and reinitialization of level set equations. The finite volume method is used for the discretization of the continuity and momentum equations using SIMPLE scheme where the finite difference method is used to discretization of the magnetic field equations. Also a level set method is used to capture the interface of two phases. The results are compared with available numerical and experimental results in the case of no-magnetic field effect which show a good agreement. It is found that uniform magnetic field accelerates the coalescence of the bubbles in dielectric fluids and enhances the rise velocity of the coalesced bubble.  相似文献   

11.
陈烁  王太  苏硕  谢英柏  刘春涛 《力学学报》2021,53(10):2736-2744
电场中的气泡对于强化传热有显著的作用, 对于电场中气泡动力学特性的研究对增强换热器效率, 提高能源利用率有重要意义. 为了获得外加电场作用下气泡的动力学特性, 设计与搭建了可视化实验平台. 采用50 kV高压直流电源构建均匀电场, 高清摄像机拍摄实验图像. 引入电场强度、气泡体积与溶液介电常数作为变量, 探究其对于气泡动力学特性的影响. 观测了竖直与水平均匀电场中气泡的上升过程, 分析了不同变量下气泡变形状况与上升速度的变化. 引入气泡长宽比L/D用于表示气泡拉伸变形程度, 截取单个气泡上升过程分时段图像展示形态变化过程. 研究结果表明, 气泡沿电场方向伸长, 且电场强度越大, 变形越明显; 竖直电场中气泡伸长导致上升速度增大, 而水平电场中气泡上升速度减小. 气泡尺寸增大, 浮升力作用增强, 气泡上升速度增大. 溶液介电常数增加, 电场力作用明显增加, 气泡变形更加明显.   相似文献   

12.
The interaction between Taylor bubbles rising in stagnant non-Newtonian solutions was studied. Aqueous solutions of carboxymethylcellulose (CMC) and polyacrylamide (PAA) polymers were used to study the effect of different rheological properties: shear viscosity and viscoelasticity. The solutions studied covered a range of Reynolds numbers between 10 and 714, and Deborah numbers up to 14. The study was performed with pairs of Taylor bubbles rising in a vertical column (0.032 m internal diameter) filled with stagnant liquid. The velocities of the leading and trailing bubbles were measured by sets of laser diodes/photocells placed along the column. The velocity of the trailing bubble was analysed together with the liquid velocity profile in the wake of a single rising bubble (Particle Image Velocimetry data obtained from the literature). For the less concentrated CMC solutions, with moderate shear viscosity and low viscoelasticity, the interaction between Taylor bubbles was similar to that found in Newtonian fluids. For the most concentrated CMC solution, which has high shear viscosity and moderate viscoelasticity, a negative wake forms behind the Taylor bubbles, inhibiting coalescence since the bubbles maintain a minimum distance of about 1D between them. For the PAA solutions, with moderate shear viscosity but higher viscoelasticity than the CMC solutions, longer wake lengths are seen, which are responsible for trailing bubble acceleration at greater distances from the leading bubble. Also in the PAA solutions, the long time needed for the fluid to recover its initial shear viscosity after the passage of the first bubble makes the fluid less resistant to the trailing bubble flow. Hence, the trailing bubble can travel at a higher velocity than the leading bubble, even at distances above 90D.  相似文献   

13.
Fusion of bubbles is a common and significant phenomenon in the nature. In this work, the potential flow theory and the boundary integral method are employed to simulate the fusion of underwater explosion bubbles. Based on the numerical and experimental results in the literature, a three-dimensional model of bubble fusion is established. A good agreement is shown between the numerical results and experimental data. Influences of characteristic parameters such as distance and depth are specifically investigated by using the developed three-dimensional program, resulting in favorable curves and conclusions. This work provides references for the relevant research on fusion mechanics and dynamic characteristics of bubbles.  相似文献   

14.
The transient deformation of a bubble in a viscoelastic extentional flow is analyzed by means of a finite element algorithm for viscoelastic moving boundary problems. Using the Oldroyd-B constitutive model, we find that bubbles in a viscoelastic fluid deform to the same steady-state configurations as bubbles in a Newtonian fluid at equal values of the far-field extensional stresses (corresponding to different stretch rates). Vapor bubbles in a developed extensional flow collapse more readily in the viscoelastic liquid than bubbles in Newtonian fluids because of the large compressive stresses associated with the viscoelastic liquid.  相似文献   

15.
李帅  张阿漫  韩蕊 《力学学报》2014,46(4):533-543
假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩. 基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法. 通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证. 利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动. 环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大. 环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.   相似文献   

16.
This work is an experimental study of the rising behavior of single air bubbles in infinite stagnant non-Newtonian liquids. Aqueous solutions of carboxymethyl cellulose (CMC) are selected to study the effect of rheological properties. The high speed photography is employed to record the bubble motion in CMC solutions. The bubble size, rising trajectory, bubble shape and velocities are determined by digital image processing technique. As expected, the rheological properties have great influence on the rising behavior of single bubble. In the less concentrated CMC solutions, the bubble rising process can be divided into three stages according to spatial evolution of bubble shape. The deformation changes the trajectories of rising bubbles and bubble hydrodynamics. As the solution concentration increases, the transitional stage gradually disappears. In the most concentrated CMC solution, the first continuous shape flattening stage is directly followed by a rising process with bubble shape basically constant, the rectilinear path and constant rising velocity. Dimensional analysis is performed to formulate a general dimensionless correlation for the deformation and motion of bubbles in infinite liquids by considering the rheological properties.  相似文献   

17.
In order to examine the influence of initial bubble conditions on bubble rise motion, two-dimensional direct numerical simulations of the motion of a gas bubble rising in viscous liquids were carried out by a coupled level set/volume-of-fluid (CLSVOF) method. For dimensionless groups predicting a “spherical-cap bubble shape” (high Eötvös and low Morton numbers), we have found computationally that solutions depend on initial bubble conditions. Specifically, for spherical-cap bubble areas, we could obtain computational results of toroidal bubbles or spherical-cap bubbles depending on initial bubble conditions. On the other hand, we showed for low Eo and high M conditions that initial bubble conditions did not affect the final state of bubble rise motion.  相似文献   

18.
The dynamics of bubble formation from a submerged nozzle in a highly viscous liquid with relatively fast inflow gas velocity is studied numerically. The numerical simulations are carried out using a sharp interface coupled level set/volume-of-fluid (CLSVOF) method and the governing equations are solved through a hydrodynamic scheme with formal second-order accuracy. Numerical results agree well with experimental results and it is shown that the sharp interface CLSVOF method enables one to reproduce the bubble formation process for a wide range of inflow gas velocities. From numerical results, one can improve their understanding of the mechanisms regarding the dynamics of bubble formation. For example, it is found that for some sets of parameters that the bubble formation process reaches steady state after several bubbles are released from the nozzle. At steady state, bubbles uniformly rise freely in the viscous liquid. It is observed that the fluid flow around a formed bubble has a significant role in determining the overall dynamic process of bubble formation; e.g. the effect of the fluid flow from the preceding bubble can be seen on newly formed bubbles.  相似文献   

19.
假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩. 基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法. 通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证. 利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动. 环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大. 环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.  相似文献   

20.
Several aspects of small-amplitude oscillations of bubbles containing gas, vapor, or a gas-vapor mixture are discussed. An application to pressure-wave propagation in a bubbly liquid is described. Nonlinear forced oscillations are considered in the light of recent research on forced oscillations of nonlinear systems. The growth of vapor bubbles, an extension of the Rayleigh-Plesset equation to non-Newtonian liquids and appreciable mass transfer at the interface, and a boundary integral numerical method for nonspherical cavitation bubble dynamics are also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号