首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi: 10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi: 10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.  相似文献   

2.
This article describes experimental results and the numerical validation for multiphase, multicomponent evaporation in porous media 1d flow. We apply the model of Lindner et al. (Transp. Porous Media 112(2):313–332, 2016. doi: 10.1007/s11242-016-0646-6). The permeability of the porous medium is measured in an additional setup with a constant head permeameter to verify the validity of Darcy flow. The heat losses are considered in an analytical approach of correlating measured temperatures and heat inputs with enthalpies. A method of interpreting the experimental results is discussed to determine the phase state. We can show good qualitative agreement of the shift and position of the evaporation region when varying boundary conditions such as mass flux, concentration and heat input.  相似文献   

3.
In the first part of this two-part paper (Lebée and Sab in On the generalization of Reissner plate theory to laminated plates, Part I: theory, doi: 10.1007/s10659-016-9581-6, 2015), the original thick plate theory derived by Reissner (J. Math. Phys. 23:184–191, 1944) was rigorously extended to the case of laminated plates. This led to a new plate theory called Generalized-Reissner theory which involves the bending moment, its first and second gradients as static variables. In this second paper, the Bending-Gradient theory (Lebée and Sab in Int. J. Solids Struct. 48(20):2878–2888, 2011 and 2889–2901, 2011) is obtained from the Generalized-Reissner theory and several projections as a Reissner–Mindlin theory are introduced. A comparison with an exact solution for the cylindrical bending of laminated plates is presented. It is observed that the Generalized-Reissner theory converges faster than the Kirchhoff theory for thin plates in terms of deflection. The Bending-Gradient theory does not converge faster but improves considerably the error estimate.  相似文献   

4.
5.
Coalbed methane (CBM) reservoirs contain gas molecules in adsorbed state into the solid matrix of coal. The pressure depletion in CBM reservoir causes the matrix gas to desorb into the cleat system which leads to matrix shrinkage. The pore volume of the cleat network changes as coal matrix shrinks. Consequently, cleat porosity and permeability of reservoir change as reservoir pressure depletes. The change in cleat porosity and permeability due to shrinkage of coal matrix with depletion of reservoir pressure invalidates the underlying assumptions made in the derivation of diffusivity equation. Under the conditions of changing porosity and permeability, the utility of the standard method of inflow performance relationship (IPR), paired with \(\frac{P}{Z^{*}}\) method suggested by King (in: SPE Annual Technical Conference and Exhibition, New Orleans, 1990), for performance prediction diminishes. In this paper, an effort has been made to predict reservoir performance of such CBM reservoirs with an alternative approach. The method suggested by Upadhyay and Laik (Transp Porous Media, 2017. doi: 10.1007/s11242-016-0816-6) has been leveraged to describe pseudo-steady-state flow in the form of a new equation that relates stress-dependent pseudo-pressure function with time. The analytical equation derived in this paper is useful in predicting reservoir pressure and flowing bottom hole pressure of a CBM well under the situation when coal matrix shrinks below desorption pressure. The paper aims to predict production performance of CBM reservoirs producing under the influence of matrix shrinkage effect with an approach alternative to conventional IPR approach paired with \(\frac{P}{Z^{*}}\) method. The results of this analytical solution have been validated with the help of numerical simulator CMG–GEM as well as in-field production data. The equations and workflow suggested in this paper can be easily implemented in spreadsheet applications like Microsoft Excel tools.  相似文献   

6.
We study the Liouville-type theorem for the semilinear parabolic equation \(u_t-\Delta u =|x|^a u^p\) with \(p>1\) and \(a\in {\mathbb R}\). Relying on the recent result of Quittner (Math Ann, doi: 10.1007/s00208-015-1219-7, 2015), we establish the optimal Liouville-type theorem in dimension \(N=2\), in the class of nonnegative bounded solutions. We also provide a partial result in dimension \(N\ge 3\). As applications of Liouville-type theorems, we derive the blow-up rate estimates for the corresponding Cauchy problem.  相似文献   

7.
The search for new integrable \((3+1)\)-dimensional partial differential systems is among the most important challenges in the modern integrability theory. It turns out that such a system can be associated with any pair of rational functions of one variable in general position, as established below using contact Lax pairs introduced in Sergyeyev (Lett Math Phys, 2017.  https://doi.org/10.1007/s11005-017-1013-4, arXiv:1401.2122).  相似文献   

8.
This paper considers the synchronization of inferior olive neurons based on the \({\mathcal {L}}_1\) adaptive control theory. The ION model treated here is the cascade connection of two nonlinear subsystems, termed ZW and UV subsystems. It is assumed that the structure of the nonlinear functions and certain parameters of the IONs are not known, and disturbance inputs are present in the system. First, an \({\mathcal {L}}_1\) adaptive control system is designed to achieve global synchrony of the ZW subsystems using a single control input. This controller can accomplish local synchrony of the UV subsystems if the linearized UV subsystem is exponentially stable. For global synchrony of the UV subsystems, an \({\mathcal {L}}_1\) adaptive control law is designed. Each of these controllers includes a state predictor, an update law, and a control law. In the closed-loop system, global synchrony of the complete models of the IONs (the interconnected ZW and UV subsystems) is accomplished using these two adaptive controllers. Simulations results show that in the closed-loop system, the IONs are synchronized, despite unmodeled nonlinearities, disturbance inputs, and parameter uncertainties in the system.  相似文献   

9.
We investigate experimentally the effect of aspect ratio ( ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of = 2 and 4 are tested in a 50 % by mass glycerin–water mixture, with a total rotation of ? = 120° and a matched tip Reynolds number of 5,000. The time-varying, three-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic digital particle image velocimetry in multiple, closely-spaced chordwise planes. The vortex structure is analyzed using the $\mathcal{Q}$ -criterion, helicity density, and spanwise quantities. For both s, the flow initially consists of a connected and coherent leading-edge vortex (LEV), tip vortex (TV), and trailing-edge vortex (TEV) loop; the LEV increases in size with span and tilts aft. Smaller, discrete vortices are present in the separated shear layers at the trailing and tip edges, which wrap around the primary TEV and TV. After about ? = 20°, the outboard-span LEV lifts off the plate and becomes arch-like. A second, smaller LEV and the formation of corner vortex structures follow. For = 4, the outboard LEV moves farther aft, multiple LEVs form ahead of it, and after about ? = 50° a breakdown of the lifted-off LEV and the TV occurs. However, for = 2, the outboard LEV lift-off is not progressive, and the overall LEV-TV flow remains more coherent and closer to the plate, with evidence of breakdown late in the motion. Inboard of about 50 % span, the = 4 LEV is stable for the motion duration. Up to approximately 60 % span, the = 2 LEV is distinct from the TV and is similarly stable. The = 2 LEV exhibits substantially higher spanwise vorticity and velocity. The latter possesses a “four-lobed” distribution at the periphery of the LEV core having adjacent positive (outboard) and negative (inboard) components, corresponding to a helical streamline structure. Both s show substantial root-to-tip velocity aft of the stable LEV, which drives outboard spanwise vorticity flux; flux toward the root is also present in the front portion of the LEV. For = 2, there is a strong flux of spanwise vorticity from the outboard LEV to the tip, which may mitigate LEV lift-off and is not found for = 4. The TV circulation for each is similar in magnitude and growth when plotted versus the chord lengths travelled by the tip, prior to breakdown. Streamwise vorticity due to the TV induces high spanwise velocity, and for = 2, the tilted LEV creates further streamwise vorticity which corresponds well to spanwise-elongated regions of spanwise velocity. For = 2, the TV influences a relatively greater portion of the span and is more coherent at later times, which coupled with the tilted LEV strongly contributes to the higher overall spanwise velocity and vorticity flux.  相似文献   

10.
In this study, uncoated paper was characterized. Three-dimensional structure of the layer was reconstructed using imaging results of micro-CT scanning with a relatively high resolution \((0.9~\upmu \hbox {m})\). Image analysis provided the pore space of the layer, which was used to determine its porosity and pore size distribution. Representative elementary volume (REV) size was determined by calculating values of porosity and permeability values for varying domain sizes. We found that those values remained unchanged for domain sizes of \(400\times 400\times 150\,\upmu \hbox {m}^{3}\) and larger; this was chosen as the REV size. The determined REV size was verified by determining capillary pressure–saturation Open image in new window imbibition curves for various domain sizes. We studied the directional dependence of Open image in new window curves by simulating water penetration into the layer from various directions. We did not find any significant difference between Open image in new window curves in different directions. We studied the effect of compression of paper on Open image in new window curves. We found that up to 30% compression of the paper layer had very small effect on the Open image in new window curve. Relative permeability as a function of saturation was also calculated. Water penetration into paper was visualized using confocal laser scanning microscopy. Dynamic visualization of water flow in the paper showed that water moves along the fibers first and then fills the pores between them.  相似文献   

11.
In Bertram (Continuum Mech Thermodyn. doi: 10.1007/s00161-014-0387-0, 2015), a mechanical framework for finite gradient elasticity and plasticity has been given. In the present paper, this is extended to thermodynamics. The mechanical theory is only briefly repeated here. A format for a rather general constitutive theory including all thermodynamic fields is given in a Euclidian invariant setting. The plasticity theory is rate-independent and unconstrained. The Clausius–Duhem inequality is exploited to find necessary and sufficient conditions for thermodynamic consistency. The residual dissipation inequality restricts the flow and hardening rules in combination with the yield criterion.  相似文献   

12.
In this paper, we study the robust finite \(L_2 \) -gain control for a class of cascade switched nonlinear systems with parameter uncertainty. Each subsystem of the switched system under consideration is composed of a zero-input asymptotically stable nonlinear part which is a lower dimension switched system, and of a linearizable part. The uncertainty appears in the control channel of each subsystem. We give sufficient conditions under which the nonlinear feedback controllers are derived to guarantee that the \(L_2 \) -gain of the closed-loop switched system is less than a prespecified value for all admissible uncertainty under arbitrary switching. Moreover, we also develop the \(L_2\) -gain controllers for the switched systems with nonminimum phase case.  相似文献   

13.
Recently, a paper about the Nth-order rogue waves for an inhomogeneous higher-order nonlinear Schrödinger equation using the generalized Darboux transformation is published. Song et al. (Nonlinear Dyn 82(1):489–500. doi: 10.1007/s11071-015-2170-6, 2015). However, the inhomogeneous equation which admits a nonisospectral linear eigenvalue problem is mistaken for having a constant spectral parameter by the authors. This basic error causes the results to be wrong, especially regarding the Darboux transformation (DT) in Sect. 2 when the inhomogeneous terms are dependent of spatial variable x. In fact, the DT for inhomogeneous equation has an essential difference from the isospectral case, and their results are correct only in the absence of inhomogeneity which was already discussed in detail before. Consequently, we firstly modify the DT based on corresponding nonisospectral linear eigenvalue problem. Then, the nonautonomous solitons are obtained from zero seed solutions. Properties of these solutions in the inhomogeneous media are discussed graphically to illustrate the influences of the variable coefficients. Finally, the failure of finding breather and rogue wave solutions from this modified DT is also discussed.  相似文献   

14.
In this note some points for paper [Huabin Chen, Chuanxi Zhu, Peng Hu, Yong Zhang, Delayed-state-feedback exponential stabilization for uncertain Markovian jump systems with mode-dependent time-varying state delays, Nonlinear Dyn. (2012), doi:10.1007/s11071-012-0324-3] are presented.  相似文献   

15.
Concentrated solutions of nearly monodisperse poly(methyl methacrylate), PMMA-270k and PMMA-86k, in oligo(methyl methacrylate), MMA o-4k and MMA o-2k, investigated by Wingstrand et al. (Phys Rev Lett 115:078302, 2015) and Wingstrand (2015) do not follow the linear-viscoelastic scaling relations of monodisperse polystyrenes (PS) dissolved in oligomeric styrene (Wagner in Rheol Acta 53:765–777, 2014a, in Non-Newtonian Fluid Mech 222:121–131, 2014b; Wagner et al. in J Rheol 59:1113–1130, 2015). Rather, PMMA-270k shows an attractive interaction with MMA, in contrast to the interaction of PMMA-86k and MMA. This different behavior can be traced back to different tacticities of the two polymers. The attractive interaction of PMMA-270k with o-4k creates pseudo entanglements, which increase the interchain tube pressure, and therefore, the solution PMMA-270k/o-4k shows, as reported by Wingstrand et al. (Phys Rev Lett 115:078302, 2015), qualitatively a similar scaling of the elongational viscosity with \( {\left(\dot{\varepsilon}{\tau}_R\right)}^{-1/2} \) as observed for polystyrene melts. For the solution PMMA-270/o-2k, this effect is only seen at the highest elongation rates investigated. The elongational viscosity of PMMA-86k dissolved in oligomeric MMA is determined by the Rouse time of the melt, as in the case of polystyrene solutions.
Graphical abstract ?
  相似文献   

16.
We study the Maslov index as a tool to analyze stability of steady state solutions to a reaction–diffusion equation in one spatial dimension. We show that the path of unstable subspaces associated to this equation is governed by a matrix Riccati equation whose solution S develops singularities when changes in the Maslov index occur. Our main result proves that at these singularities the change in Maslov index equals the number of eigenvalues of S that increase to \(+\infty \) minus the number of eigenvalues that decrease to \(-\infty \).  相似文献   

17.
In this paper, a constrained optimization problem is formulated to tune the limit cycle minimizing controllers meeting additional loop-shaping performances such as phase margin and gain crossover frequency. A graphical approach is proposed so as to determine the superior controller in terms of better limit-cycle suppression. The framework is illustrated with a suitable case of elementary servo plant which has separable static backlash nonlinearity in its model. For this plant, integer-order controllers and their fractional counterparts (PI and \( PI ^\alpha , [ PI ]^\alpha \) ; PID and \( PI ^\alpha D^\beta \) ) are designed and compared. Interestingly, it is found that the fractional controllers produce better limit-cycle responses than their integer counterparts while both meeting the rest of the specifications. Correspondingly, the better sustained oscillations in the plant output response are obtained with fractional controllers. Such a ‘fractional superiority’ is further verified with the closed-loop nonlinear simulation.  相似文献   

18.
Synchronization in a one-dimensional chain of Kuramoto oscillators with periodic boundary conditions is studied. An algorithm to rapidly calculate the critical coupling strength \(K_c\) for complete frequency synchronization is presented according to the mathematical constraint conditions and the periodic boundary conditions. By this new algorithm, we have checked the relation between \(\langle K_c\rangle \) and \(N\) , which is \(\langle K_c\rangle \sim \sqrt{N}\) , not only for small \(N\) , but also for large \(N\) . We also investigate the heavy-tailed distribution of \(K_c\) for random intrinsic frequencies, which is obtained by showing that the synchronization problem is equivalent to a discretization of Brownian motion. This theoretical result was checked by generating a large sample of \(K_c\) for large \(N\) from our algorithm to get the empirical density of \(K_c\) . Finally, we derive the permutation for the maximum coupling strength and its exact expression, which grows linearly with \(N\) and would provide the theoretical support for engineering applications.  相似文献   

19.
The Singular Set of Minima of Integral Functionals   总被引:3,自引:0,他引:3  
In this paper we provide upper bounds for the Hausdorff dimension of the singular set of minima of general variational integrals where F is suitably convex with respect to Dv and Hölder continuous with respect to (x,v). In particular, we prove that the Hausdorff dimension of the singular set is always strictly less than n, where .  相似文献   

20.
We present a computationally fast Invasion Percolation (IP) algorithm. IP is a numerical approach for generating realistic fluid distributions for quasi-static (i.e., slow) immiscible fluid invasion in porous media. The algorithm proposed here uses a binary-tree data structure to identify the site (pore) connected to the invasion cluster that is the next to be invaded. Gravity is included. Trapping is not explicitly treated in the numerical examples but can be added, for example, using a Hoshen–Kopelman algorithm. Computation time to percolation for a 3D system having $N$ total sites and $M$ invaded sites at percolation goes as $O(M \log M)$ for the proposed binary-tree algorithm and as $O(M N)$ for a standard implementation of IP that searches through all of the uninvaded sites at each step. The relation between $M$ and $N$ is $M = N^{D/E}$ , where $D$ is the fractal dimension of an infinite cluster and $E$ is Euclidean space dimension. In numerical practice, on finite-sized cubic lattices with invasion structures influenced by the injection boundary and boundary conditions lateral to the flow direction, we observe the scaling $M = N^{0.852}$ in 3D (valid through the second decimal place) instead of $M= N^{0.843}$ based on the infinite cluster fractal dimension $D=2.53$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号