首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow over two square cylinders in staggered arrangement is simulated numerically at a fixed Reynolds number (\(Re =150\)) for different gap spacing between cylinders from 0.1 to 6 times a cylinder side to understand the flow structures. The non-inclined square cylinders are located on a line with a staggered angle of \(45^{\circ }\) to the oncoming velocity vector. All numerical simulations are carried out with a finite-volume code based on a collocated grid arrangement. The effects of vortex shedding on the various features of the flow field are numerically visualized using different flow contours such as \(\lambda _{2}\) criterion, vorticity, pressure and magnitudes of velocity to distinguish the distinctive flow patterns. By changing the gap spacing between cylinders, five different flow regimes are identified and classified as single body, periodic gap flow, aperiodic, modulated periodic and synchronized vortex shedding regimes. This study revealed that the observed multiple frequencies in global forces of the downstream cylinder in the modulated periodic regime are more properly associated with differences in vortex shedding frequencies of individual cylinders than individual shear layers reported in some previous works; particularly, both shear layers from the downstream cylinder often shed vortices at the same multiple frequencies. The maximum Strouhal number for the upstream cylinder is also identified at \({G}^{*}=1\) for aperiodic flow pattern. Furthermore, for most cases studied, the downstream cylinder experiences larger drag force than the upstream cylinder.  相似文献   

2.
The presence of a finite tangential velocity on a hydrodynamically slipping surface is known to reduce vorticity production in bluff body flows substantially while at the same time enhancing its convection downstream and into the wake. Here, we investigate the effect of hydrodynamic slippage on the convective heat transfer (scalar transport) from a heated isothermal circular cylinder placed in a uniform cross-flow of an incompressible fluid through analytical and simulation techniques. At low Reynolds (\({\textit{Re}}\ll 1\)) and high Péclet (\({\textit{Pe}}\gg 1\)) numbers, our theoretical analysis based on Oseen and thermal boundary layer equations allows for an explicit determination of the dependence of the thermal transport on the non-dimensional slip length \(l_s\). In this case, the surface-averaged Nusselt number, Nu transitions gradually between the asymptotic limits of \(Nu \sim {\textit{Pe}}^{1/3}\) and \(Nu \sim {\textit{Pe}}^{1/2}\) for no-slip (\(l_s \rightarrow 0\)) and shear-free (\(l_s \rightarrow \infty \)) boundaries, respectively. Boundary layer analysis also shows that the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) holds for a shear-free cylinder surface in the asymptotic limit of \({\textit{Re}}\gg 1\) so that the corresponding heat transfer rate becomes independent of the fluid viscosity. At finite \({\textit{Re}}\), results from our two-dimensional simulations confirm the scaling \(Nu \sim {\textit{Pe}}^{1/2}\) for a shear-free boundary over the range \(0.1 \le {\textit{Re}}\le 10^3\) and \(0.1\le {\textit{Pr}}\le 10\). A gradual transition from the lower asymptotic limit corresponding to a no-slip surface, to the upper limit for a shear-free boundary, with \(l_s\), is observed in both the maximum slip velocity and the Nu. The local time-averaged Nusselt number \(Nu_{\theta }\) for a shear-free surface exceeds the one for a no-slip surface all along the cylinder boundary except over the downstream portion where unsteady separation and flow reversal lead to an appreciable rise in the local heat transfer rates, especially at high \({\textit{Re}}\) and Pr. At a Reynolds number of \(10^3\), the formation of secondary recirculating eddy pairs results in appearance of additional local maxima in \(Nu_{\theta }\) at locations that are in close proximity to the mean secondary stagnation points. As a consequence, Nu exhibits a non-monotonic variation with \(l_s\) increasing initially from its lowermost value for a no-slip surface and then decreasing before rising gradually toward the upper asymptotic limit for a shear-free cylinder. A non-monotonic dependence of the spanwise-averaged Nu on \(l_s\) is observed in three dimensions as well with the three-dimensional wake instabilities that appear at sufficiently low \(l_s\), strongly influencing the convective thermal transport from the cylinder. The analogy between heat transfer and single-component mass transfer implies that our results can directly be applied to determine the dependency of convective mass transfer of a single solute on hydrodynamic slip length in similar configurations through straightforward replacement of Nu and \({\textit{Pr}}\) with Sherwood and Schmidt numbers, respectively.  相似文献   

3.
The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of \(L/D=6\) are analyzed at a free-stream Mach number of \(M_\infty =0.6\) and depth-based Reynolds number of \(Re_D=502\). In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of \(\beta =0\). To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of \(W/D=1\) and 2. We find that the 2D wake mode is not present in the 3D cavity flow with \(W/D=2\), in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of \(\lambda /D=0.5{-}2.0\) to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.  相似文献   

4.
In this article, we investigate the initial and boundary blow-up problem for the \(p\)-Laplacian parabolic equation \(u_t-\Delta _p u=-b(x,t)f(u)\) over a smooth bounded domain \(\Omega \) of \(\mathbb {R}^N\) with \(N\ge 2\), where \(\Delta _pu=\mathrm{div}(|\nabla u|^{p-2}\nabla u)\) with \(p>1\), and \(f(u)\) is a function of regular variation at infinity. We study the existence and uniqueness of positive solutions, and their asymptotic behaviors near the parabolic boundary.  相似文献   

5.
The linear stability analysis of vertical throughflow of power law fluid for double-diffusive convection with Soret effect in a porous channel is investigated in this study. The upper and lower boundaries are assumed to be permeable, isothermal and isosolutal. The linear stability of vertical through flow is influenced by the interactions among the non-Newtonian Rayleigh number (Ra), Buoyancy ratio (N), Lewis number (Le), Péclet number (Pe), Soret parameter (Sr) and power law index (n). The results indicate that the Soret parameter has a significant influence on convective instability of power law fluid. It has also been noticed that buoyancy ratio has a dual effect on the instability of fluid flow. Further, it is noticed that the basic temperature and concentration profiles have singularities at \(Pe = 0\) and \(Le = 1\), the convective instability is looked into for the limiting case of \(Pe\rightarrow 0\) and \(Le \rightarrow 1\). For the case of pure thermal convection with no vertical throughflow, the present numerical results coincide with the solution of standard Horton–Rogers–Lapwood problem. The present results for critical Rayleigh number obtained using bvp4c and two-term Galerkin approximation are compared with those available in the literature and are tabulated.  相似文献   

6.
Consider the planar Newtonian \((2N+1)\)-body problem, \(N\ge 1,\) with \(2N\) bodies of unit mass and one body of mass \(m\). Using the discrete symmetry due to the equal masses and reducing by the rotational symmetry, we show that solutions with the \(2N\) unit mass points at the vertices of two concentric regular \(N\)-gons and \(m\) at the centre at all times form invariant manifold. We study the regular \(2N\)-gon with central mass \(m\) relative equilibria within the dynamics on the invariant manifold described above. As \(m\) varies, we identify the bifurcations, relate our results to previous work and provide the spectral picture of the linearization at the relative equilibria.  相似文献   

7.
A new forced KdV equation including topography is derived and the numerical solutions are given. The topographic variable should be related with the temporal and spatial function, which is called unstable topography. The physical features of the solitary waves about the mass and energy are discussed by theoretical analysis. In further studies, the pseudo-spectral numerical methods are used to discuss the evolution of solitary wave generated by the topography when meridional wave number \(m=1\); in a similar way, we analyze the solitary wave when meridional wave number \(m=2\). At last, we make the comparison for the characteristics of waves between \(m=1\) and \(m=2\), the wave of meridional number \(m=1\) plays a leading role.  相似文献   

8.
We consider bounded solutions of the semilinear heat equation \(u_t=u_{xx}+f(u)\) on \(R\), where \(f\) is of the unbalanced bistable type. We examine the \(\omega \)-limit sets of bounded solutions with respect to the locally uniform convergence. Our goal is to show that even for solutions whose initial data vanish at \(x=\pm \infty \), the \(\omega \)-limit sets may contain functions which are not steady states. Previously, such examples were known for balanced bistable nonlinearities. The novelty of the present result is that it applies to a robust class of nonlinearities. Our proof is based on an analysis of threshold solutions for ordered families of initial data whose limits at infinity are not necessarily zeros of \(f\).  相似文献   

9.
This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air–water flow, driven by a rotating top disk in a vertical conical container. As water height \(H_{\mathrm{w}}\) and cone half-angle \(\beta \) vary, numerous flow metamorphoses occur. They are investigated for \(\beta =30^{\circ }, 45^{\circ }\), and \(60^{\circ }\). For small \(H_{\mathrm{w}}\), the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as \(H_{\mathrm{w}}\) exceeds a threshold depending on \(\beta \). For all \(\beta \), the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.  相似文献   

10.
The flow over a porous laminated flat plate is investigated from a flow control perspective through experiments and computations. A square array of circular cylinders is used to model the porous lamination. We determine the velocities at the fluid–porous interface by solving the two-dimensional Navier–Stokes and the continuity equations using a staggered flow solver and using LDV in experiments. The control parameters for the porous region are porosity, \(\phi \) and Reynolds number, Re, based on the diameter of the circular cylinders used to model the porous lamination. Computations are conducted for \(0.4< \phi < 0.9\) and \(25< Re < 1000\), and the experiments are conducted for \(\phi = 0.65\) and 0.8 at \(Re \approx 391,\ 497\) and 803. The permeability of the porous lamination is observed to induce a slip velocity at the interface, effectively making it a slip wall. The slip velocity is seen to be increasing functions of \(\phi \) and Re. For higher porosities at higher Re, the slip velocity shows non-uniform and unsteady behavior and a breakdown Reynolds number is defined based on this characteristic. A map demarcating the two regimes of flow is drawn from the computational and experimental data. We observe that the boundary layer over the porous lamination is thinner than the Blasius boundary layer and the shear stress is higher at locations over the porous lamination. We note that the porous lamination helps maintain a favorable pressure gradient at the interface which delays separation. The suitable range of porosities for effective passive separation control is deduced from the results.  相似文献   

11.
A large number (1253) of high-quality streaming potential coefficient (\(C_\mathrm{sp})\) measurements have been carried out on Berea, Boise, Fontainebleau, and Lochaline sandstones (the latter two including both detrital and authigenic overgrowth forms), as a function of pore fluid salinity (\(C_\mathrm{f})\) and rock microstructure. All samples were saturated with fully equilibrated aqueous solutions of NaCl (10\(^{-5}\) and 4.5 mol/dm\(^{3})\) upon which accurate measurements of their electrical conductivity and pH were taken. These \(C_\mathrm{sp}\) measurements represent about a fivefold increase in streaming potential data available in the literature, are consistent with the pre-existing 266 measurements, and have lower experimental uncertainties. The \(C_\mathrm{sp}\) measurements follow a pH-sensitive power law behaviour with respect to \(C_\mathrm{f}\) at medium salinities (\(C_\mathrm{sp} =-\,1.44\times 10^{-9} C_\mathrm{f}^{-\,1.127} \), units: V/Pa and mol/dm\(^{3})\) and show the effect of rock microstructure on the low salinity \(C_\mathrm{sp}\) clearly, producing a smaller decrease in \(C_\mathrm{sp}\) per decade reduction in \(C_\mathrm{f}\) for samples with (i) lower porosity, (ii) larger cementation exponents, (iii) smaller grain sizes (and hence pore and pore throat sizes), and (iv) larger surface conduction. The \(C_\mathrm{sp}\) measurements include 313 made at \(C_\mathrm{f} > 1\) mol/dm\(^{3}\), which confirm the limiting high salinity \(C_\mathrm{sp}\) behaviour noted by Vinogradov et al., which has been ascribed to the attainment of maximum charge density in the electrical double layer occurring when the Debye length approximates to the size of the hydrated metal ion. The zeta potential (\(\zeta \)) was calculated from each \(C_\mathrm{sp}\) measurement. It was found that \(\zeta \) is highly sensitive to pH but not sensitive to rock microstructure. It exhibits a pH-dependent logarithmic behaviour with respect to \(C_\mathrm{f}\) at low to medium salinities (\(\zeta =0.01133 \log _{10} \left( {C_\mathrm{f} } \right) +0.003505\), units: V and mol/dm\(^{3})\) and a limiting zeta potential (zeta potential offset) at high salinities of \({\zeta }_\mathrm{o} = -\,17.36\pm 5.11\) mV in the pH range 6–8, which is also pH dependent. The sensitivity of both \(C_\mathrm{sp}\) and \(\zeta \) to pH and of \(C_\mathrm{sp}\) to rock microstructure indicates that \(C_\mathrm{sp}\) and \(\zeta \) measurements can only be interpreted together with accurate and equilibrated measurements of pore fluid conductivity and pH and supporting microstructural and surface conduction measurements for each sample.  相似文献   

12.
13.
In this paper we contribute to the generic theory of Hamiltonians by proving that there is a \(C^2\)-residual \({\mathcal {R}}\) in the set of \(C^2\) Hamiltonians on a closed symplectic manifold \(M\), such that, for any \(H\in {\mathcal {R}}\), there is a full measure subset of energies \(e\) in \(H(M)\) such that the Hamiltonian level \((H,e)\) is topologically mixing; moreover these level sets are homoclinic classes.  相似文献   

14.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

15.
This work gives a rigorous proof of the existence of propagating traveling waves of a nonlinear reaction–diffusion system which is a general Gray-Scott model of the pre-mixed isothermal autocatalytic chemical reaction of order m (\(m > 1\)) between two chemical species, a reactant A and an auto-catalyst B, \( A + m B \rightarrow (m+1) B\), and a super-linear decay of order \( n > 1\), \( B \rightarrow C\), where \( 1< n < m\). Here C is an inert product. Moreover, we establish that the speed set for existence must lie in a bounded interval for a given initial value \(u_0\) at \( - \infty \). The explicit bound is also derived in terms of \(u_0\) and other parameters. The same system also appears in a mathematical model of SIR type in infectious diseases.  相似文献   

16.
We call that a vector field has the oriented shadowing property if for any \(\varepsilon >0\) there is \(d>0\) such that each \(d\)-pseudo orbit is \(\varepsilon \)-oriented shadowed by some real orbit. In this paper, we show that the \(C^1\)-interior of the set of vector fields with the oriented shadowing property is contained in the set of vector fields with the \(\Omega \)-stability.  相似文献   

17.
Fluid flows through porous media are subject to different regimes, ranging from linear creeping flows to unsteady, chaotic turbulence. These different flow regimes at the pore scale have repercussions at larger scales, with the macroscale drag force experienced by a fluid moving through the medium becoming a nonlinear function of the average velocity beyond the creeping flow regime. Accurate prediction of the transition between different flow regimes is an important challenge with repercussions onto many engineering applications. Here, we are interested in the first deviation from Darcy’s law, when inertia effects become sizeable. Our goal is to define a Reynolds number, \(Re_{\mathrm{C}}\), so that the inertial deviation occurs when \(Re_{\mathrm{C}}\sim 1\) for any microstructure. The difficulty in doing so is to reduce the multiple length scales characterizing the geometry of the porous structure to a single length scale, \(\ell \). We analyze the problem using the method of volume averaging and identify a length scale in the form \(\ell =C_\lambda \sqrt{\nicefrac {K_\lambda }{\epsilon _\beta }}\), with \(C_\lambda \) a parameter that indicates the sensitivity of the microstructure to inertia. The main advantage of this definition is that an explicit formula for \(C_\lambda \) is given; \(C_\lambda \) is computed from a creeping flow simulation in the porous medium; and \(Re_{\mathrm{C}}\) can be used to predict the transition to a non-Darcian regime more accurately than by using Reynolds numbers based on alternative length scales. The theory is validated numerically with data from flow simulations for a variety of microstructures.  相似文献   

18.
The first part of this paper is a general approach towards chaotic dynamics for a continuous map \(f:X\supset M\rightarrow X\) which employs the fixed point index and continuation. The second part deals with the differential equation
$$\begin{aligned} x'(t)=-\alpha \,x(t-d_{{\varDelta }}(x_t)). \end{aligned}$$
with state-dependent delay. For a suitable parameter \(\alpha \) close to \(5\pi /2\) we construct a delay functional \(d_{{\varDelta }}\), constant near the origin, so that the previous equation has a homoclinic solution, \(h(t)\rightarrow 0\) as \(t\rightarrow \pm \infty \), with certain regularity properties of the linearization of the semiflow along the flowline \(t\mapsto h_t\). The third part applies the method from the beginning to a return map which describes solution behaviour close to the homoclinic loop, and yields the existence of chaotic motion.
  相似文献   

19.
We consider positive classical solutions of
$$\begin{aligned} v_t=(v^{m-1}v_x)_x, \qquad x\in {\mathbb {R}}, \ t>0, \qquad (\star ) \end{aligned}$$
in the super-fast diffusion range \(m<-1\). Our main interest is in smooth positive initial data \(v_0=v(\cdot ,0)\) which decay as \(x\rightarrow +\infty \), but which are possibly unbounded as \(x\rightarrow -\infty \), having in mind monotonically decreasing data as prototypes. It is firstly proved that if \(v_0\) decays sufficiently fast only in one direction by satisfying
$$\begin{aligned} v_0(x) \le cx^{-\beta } \qquad \text{ for } \text{ all } ~x>0 \quad \hbox { with some }\quad \beta >\frac{2}{1-m} \end{aligned}$$
and some \(c>0\), then the so-called proper solution of (\(\star \)) vanishes identically in \({\mathbb {R}}\times (0,\infty )\), and accordingly no positive classical solution exists in any time interval in this case. Complemented by some sufficient criteria for solutions to remain positive either locally or globally in time, this condition for instantaneous extinction is shown to be optimal at least with respect to algebraic decay of the initial data. This partially extends some known nonexistence results for (\(\star \)) (Daskalopoulos and Del Pino in Arch Rat Mech Anal 137(4):363–380, 1997) in that it does not require any knowledge on the behavior of \(v_0(x)\) for \(x<0\). Next focusing on the phenomenon of extinction in finite time, we show that in this respect a mass influx from \(x=-\infty \) can interact with mass loss at \(x=+\infty \) in a nontrivial manner. Namely, we shall detect examples of monotone initial data, with critical decay as \(x\rightarrow +\infty \) and exponential growth as \(x\rightarrow -\infty \), that lead to solutions of (\(\star \)) which become extinct at a finite positive time, but which have empty extinction sets. This is in sharp contrast to known extinction mechanisms which are such that the corresponding extinction sets coincide with all of \({\mathbb {R}}\).
  相似文献   

20.
Flow development and degradation during Type B turbulent drag reduction by 0.10 to 10 wppm solutions of a partially-hydrolysed polyacrylamide B1120 of MW \(=\) 18x106 was studied in a smooth pipe of ID \(=\) 4.60 mm and L/D \(=\) 210 at Reynolds numbers from 10000 to 80000 and wall shear stresses Tw from 8 to 600 Pa. B1120 solutions exhibited facets of a Type B ladder, including segments roughly parallel to, but displaced upward from, the P-K line; those that attained asymptotic maximum drag reduction at low Re f but departed downwards into the polymeric regime at a higher retro-onset Re f; and segments at MDR for all Re f. Axial flow enhancement profiles of S\(^{\prime }\) vs L/D reflected a superposition of flow development and polymer degradation effects, the former increasing and the latter diminishing S\(^{\prime }\) with increasing distance downstream. Solutions that induced normalized flow enhancements S\(^{\prime }\)/S\(^{\prime }_{\mathrm {m}} <\) 0.4 developed akin to solvent, with Le,p/D \(=\) Le,n/D \(<\) 42.3, while those at maximum drag reduction showed entrance lengths Le,m/D \(\sim \) 117, roughly 3 times the solvent Le,n/D. Degradation kinetics were inferred by first detecting a falloff point (Ref, S\(^{{\prime }\wedge }\)), of maximum observed flow enhancement, for each polymer solution. A plot of S\(^{{\prime }\wedge }\)vs C revealed S\(^{{\prime }\wedge }\)linear in C at low C, with lower bound [S\(^{\prime }\)] \(=\) 5.0 wppm??1, and S\(^{{\prime }\wedge }\) independent of C at high C, with upper bound S\(^{\prime }_{\mathrm {m}} =\) 15.9. The ratio S\(^{\prime }\)/S\(^{{\prime }\wedge }\) in any pipe section was interpreted to be the undegraded fraction of original polymer therein. Semi-log plots of (S\(^{\prime }\)/S\(^{{\prime }\wedge }\)) at a section vs transit time from pipe entrance thereto revealed first order kinetics, from which apparent degradation rate constants kdeg s??1 and entrance severities ?ln(S\(^{\prime }\)/S\(^{{\prime }\wedge }\))0 were extracted. At constant C, kdeg increased linearly with increasing wall shear stress Tw, and at constant Tw, kdeg was independent of C, providing a B1120 degradation modulus (kdeg/Tw) \(=\) (0.012 \(\pm \) 0.001) (Pa s)??1 for 8 \(<\) Tw Pa \(<\) 600, 0.30 \(<\) C wppm \(<\) 10. Entrance severities were negligible below a threshold Twe \(\sim \) 30 Pa and increased linearly with increasing Tw for Tw \(>\) Twe. The foregoing methods were applied to Type A drag reduction by 0.10 to 10 wppm solutions of a polyethyleneoxide PEO P309, MW \(=\) 11x106, in a smooth pipe of ID \(=\) 7.77 mm and L/D \(=\) 220 at Re from 4000 to 115000. P309 solutions that induced S\(^{\prime }\)/S\(^{\prime }_{\mathrm {m}} <\) 0.4 developed akin to solvent, with Le,p/D \(=\) Le,n/D \(<\) 23, while those at MDR had entrance lengths Le,m/D \(\sim \) 93, roughly 4 times the solvent Le,n/D. P309 solutions described a Type A fan distorted by polymer degradation. A typical trajectory departed the P-K line at an onset point Re f* followed by ascending and descending polymeric regime segments separated by a falloff point Ref, of maximum flow enhancement; for all P309 solutions, onset Re f* = 550 \(\pm \) 100 and falloff Ref = 2550 \(\pm \) 250, the interval between them delineating Type A drag reduction unaffected by degradation. A plot of falloff S\(^{{\prime }\wedge }\) vs C for PEO P309 solutions bore a striking resemblance to the analogous S\(^{{\prime }\wedge }\) vs C plot for solutions of PAMH B1120, indicating that the initial Type A drag reduction by P309 after onset at Re f* had evolved to Type B drag reduction by falloff at Ref. Presuming that Type B behaviour persisted past falloff permitted inference of P309 degradation kinetics; kdeg was found to increase linearly with increasing Tw at constant C and was independent of C at constant Tw, providing a P309 degradation modulus (kdeg/Tw) \(=\) (0.011 \(\pm \) 0.002) (Pa s)??1 for 4 \(<\) Tw Pa \(<\) 400, 0.10 \(<\) C wppm < 5.0. Comparisons between the present degradation kinetics and previous literature showed (kdeg/Tw) data from laboratory pipes of D \(\sim \) 0.01 m to lie on a simple extension of (kdeg/Tw) data from pipelines of D \(\sim \) 0.1 m and 1.0 m, along a power-law relation (kdeg/Tw) \(=\) 10??5.4.D??1.6. Intrinsic slips derived from PAMH B1120 and PEO P309-at-falloff experiments were compared with previous examples from Type B drag reduction by polymers with vinylic and glycosidic backbones, showing: (i) For a given polymer, [S\(^{\prime }\)] was independent of Re f and pipe ID, implying insensitivity to both micro- and macro-scales of turbulence; and (ii) [S\(^{\prime }\)] increased linearly with increasing polymer chain contour length Lc, the proportionality constant \(\beta =\) 0.053 \(\pm \) 0.036 enabling estimation of flow enhancement S\(^{\prime } =\) C.Lc.β for all Type B drag reduction by polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号