首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-linear anisotropic mechanical response of soft tissue is largely dependent on the structure of the underlying collagen network. Collagen structure has been successfully quantified for various tissue types in terms of a locally defined fiber orientation distribution function. The continuous distribution function derived from structural data can be directly incorporated into an integral representation of the strain energy function for modeling tissue behavior. Alternatively, non-integral (often invariant-based) strain energy functions have been developed in which the collagen network structure is approximated using a discrete set of fiber classes. The advantage of such an approach is increased computational efficiency since the values of the strain energy and its derivatives (e.g. stress) can be evaluated without numerical integration. However, because of the structural simplifications such models are presumably unable to predict mechanical data as accurately as the models which incorporate a continuous orientation distribution function. In this work the ability of discrete versus continuous fiber models to capture the non-linear anisotropic response of soft tissue is critically analyzed. Both unimodal and bimodal fiber distributions are considered. A general formulation has been developed in terms of an arbitrary fiber strain energy function, such that the analysis can be performed for any suitable fiber material model. For tissue structures in which a discrete representation is suitable, techniques are presented for establishing the range of loading conditions in which model accuracy is not significantly compromised, thus justifying the use of an invariant-based modeling approach.  相似文献   

2.
One-dimensional models for compaction of cellular materials exhibiting strain hardening are proposed for two different impact scenarios. The models reveal the characteristic features of deformation under the condition of decreasing velocity during the impact event. It was established that an unloading plastic wave of strong discontinuity propagates in the foam and it has a significant dynamic effect on the foam compaction and energy absorption. The proposed models are based on the actual experimentally derived stress strain curves. The compaction mechanism in three aluminium based foam materials, two of them with relatively low density – Alporas and Cymat with 9% and 9.3% relative density, respectively and a higher density Cymat foam with 21% relative density, is analysed. Numerical simulations were carried out to verify the proposed models.The predictions of the proposed models are compared with published analytical models of compaction of cellular materials which assume a predefined densification strain. It is shown that the approximation of a cellular material with significant strain hardening by the Rigid Perfectly-Plastic-Locking (RPPL) model can lead to an overestimation of the energy absorption capacity for the observed stroke due to the non-uniform strains along the compacted zone of the actual material in contrast to the predefined constant densification strain in the RPPL model. The assumption of a constant densification strain leads also to an overestimation of the maximum stress, which occurs under impact.  相似文献   

3.
A length scale dependent linear viscoelastic constitutive model is developed. First, a generalized Maxwell model that can describe standard linear viscoelasticity is considered. The model is then generalized to include effects of viscous strain gradients. The formulation of additional boundary conditions resulting from the strain gradient terms is discussed. It is shown that the boundary conditions can be formulated in terms of a surface energy. As an example, the thermal expansion of a thin polymeric film on an elastic substrate is analyzed. It is shown that the relative thermal expansion in the thickness direction of the film decreases for sufficiently small film thicknesses, in accordance with experimental observations. This effect cannot be captured by a standard thermo-viscoelastic theory, which gives a constant thermal expansion independent of film thickness.  相似文献   

4.
In the analysis of materials with random heterogeneous microstructure the assumption is often made that material behavior can be represented by homogenized or effective properties. While this assumption yields accurate results for the bulk behavior of composite materials, it ignores the effects of the random microstructure. The spatial variations in these microstructures can focus, initiate and propagate localized non-linear behavior, subsequent damage and failure. In previous work a computational method, moving window micromechanics (MW), was used to capture microstructural detail and characterize the variability of the local and global elastic response. Digital images of material microstructure described the microstructure and a local micromechanical analysis was used to generate spatially varying material property fields. The strengths of this approach are that the material property fields can be consistently developed from digital images of real microstructures, they are easy to import into finite element models (FE) using regular grids, and their statistical characterizations can provide the basis for simulations further characterizing stochastic response. In this work, the moving window micromechanics technique was used to generate material property fields characterizing the non-linear behavior of random materials under plastic yielding; specifically yield stress and hardening slope, post yield. The complete set of material property fields were input into FE models of uniaxial loading. Global stress strain curves from the FE–MW model were compared to a more traditional micromechanics model, the generalized method of cells. Local plastic strain and local stress fields were produced which correlate well to the microstructure. The FE–MW method qualitatively captures the inelastic behavior, based on a non-linear flow rule, of the sample continuous fiber composites in transverse uniaxial loading.  相似文献   

5.
    
The behaviour of stationary, non-passive plumes can be simulated in a reasonably simple and accurate way by integral models. One of the key requirements of these models, but also one of their less well-founded aspects, is the entrainment assumption, which parameterizes turbulent mixing between the plume and the environment. The entrainment assumption developed by Schatzmann and adjusted to a set of experimental results requires four constants and an ad hoc hypothesis to eliminate undesirable terms. With this assumption, Schatzmann’s model exhibits numerical instability for certain cases of plumes with small velocity excesses, due to very fast radius growth. The purpose of this paper is to present an alternative entrainment assumption based on a first-order turbulence closure, which only requires two adjustable constants and seems to solve this problem. The asymptotic behaviour of the new formulation is studied and compared to previous ones. The validation tests presented by Schatzmann are repeated and it is found that the new formulation not only eliminates numerical instability but also predicts more plausible growth rates for jets in co-flowing streams.  相似文献   

6.
The behaviour of stationary, non-passive plumes can be simulated in a reasonably simple and accurate way by integral models. One of the key requirements of these models, but also one of their less well-founded aspects, is the entrainment assumption, which parameterizes turbulent mixing between the plume and the environment. The entrainment assumption developed by Schatzmann and adjusted to a set of experimental results requires four constants and an ad hoc hypothesis to eliminate undesirable terms. With this assumption, Schatzmann’s model exhibits numerical instability for certain cases of plumes with small velocity excesses, due to very fast radius growth. The purpose of this paper is to present an alternative entrainment assumption based on a first-order turbulence closure, which only requires two adjustable constants and seems to solve this problem. The asymptotic behaviour of the new formulation is studied and compared to previous ones. The validation tests presented by Schatzmann are repeated and it is found that the new formulation not only eliminates numerical instability but also predicts more plausible growth rates for jets in co-flowing streams.  相似文献   

7.
In this work, entanglements in a polymer melt are modeled as a system of parallel springs which form and decay spontaneously. The springs are assumed to be nonlinear, and a certain fraction of them is torn apart by a certain strain.Based on these assumptions, a model of behavior in simple shear is developed. This model is shown to predict a behavior comprising that of a Wagner fluid, and is generalized to a tensorial model of single integral type. The integrand depends on a product of a material function, modeling reversible behavior, and a material functional which takes irreversible processes into account.Irreversibility of network disentanglement, which may occur when deformation changes or reverses direction, can be modeled in this way. It is shown that the two well-known Wagner constitutive equations with and without irreversibility assumptions are special cases of the model developed. In case of a deformation which does not change directions, the new material function and the material functional are multiplied to yield Wagner's damping function.When the rate of spring formation is a function of temperature, the developed model is shown to predict thermorheologically simple behavior. A constitutive equation for non-isothermal flow of polymers is developed with this assumption.  相似文献   

8.
基于时域自适应算法的单向粘弹性节理岩体的等效分析   总被引:1,自引:1,他引:0  
在粘弹性节理岩体的数值仿真中,必需合理地计及节理的影响.若将节理与岩体作为独立的材料组分考虑,在节理密集的情况下,时空两方面的计算开销可能是很难承受的.本文通过时域展开技术与一个简单的等效假定,得到了递推格式的粘弹性单向节理岩体的等效本构关系,及等效场的递推求解格式,并由此数值模拟了一个粘弹性节理岩体中的洞室,计算结果与考虑独立组分的ANSYS粘弹性分析进行了比较,二者的计算平均误差约为11.03%,但前者的计算效率为后者16.81倍.本文工作有可能为粘弹性节理岩体的数值模拟提供一条新的途径.  相似文献   

9.
This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress–deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.  相似文献   

10.
Nonlinear strain wave propagation along the lamina of a periodic two-component composite was studied. A nonlinear model was developed to describe the strain dynamics. The model asymptotically satisfies the boundary conditions between the lamina, in contrast to previously developed models. Our model reduces an initial two-dimensional problem into a single one-dimensional nonlinear governing equation for longitudinal strains in the form of the Boussinesq equation. The width of the lamina may control the propagation of either compression or tensile localized strain waves, independent of the elastic constants of the materials of the composite.  相似文献   

11.
Increasingly fine spatial resolution in numerical models of brittle materials promises to improve prediction and characterization of dynamic failure in these materials. However, as the resolution of these numerical models begins to approach the material micro-scale, the associated discretization requires a definitive connection to the microstructure. In many cases a numerical model (e.g., a finite element mesh) that explicitly resolves each flaw within the material is not feasible for macro-scale analyses. As an alternative, each element can be treated as a meso-scale continuum with constitutive properties that reflect the characteristics of the underlying microstructure. Small scale elements will exhibit random variations in the constitutive properties as a result of the random variations in the number and types of flaws and the flaw sizes contained within each element. The present paper proposes a technique for assigning probability distributions to these element properties, which can be thought of as the meso-scale constitutive properties. In particular, the strain-rate dependent compressive uniaxial strength of a ceramic is modeled using a two-dimensional analytical model developed by Paliwal and Ramesh (2008). The effect on the probability distribution of meso-scale (or element-level) strength from flaw density, flaw size distribution, flaw clustering, and strain rate are studied. Higher strain rates, more flaw clustering, and decreasing element size all contribute to greater scatter in uniaxial compressive strength. Variations in flaw size increase the scatter in the strength more for low strain rate loadings and less clustered microstructures. The results provide interesting comparisons to the classical assumption of a two-parameter Weibull-distributed strength, showing that a three-parameter Weibull distribution and even a lognormal distribution fit better with the simulated strength data.  相似文献   

12.
The present work can be regarded as a first step toward an integrated modeling of mold filling during injection molding process of polymer composites and the resulting material behavior under service loading conditions. More precisely, the emphasis of the present paper is laid on how to account for local fiber orientation in the ground matrix on the prediction of the mechanical response of the composite at its final solid state. To this end, a set of experiments which captures the mechanical behavior of an injection molded short fiber-reinforced thermoplastic under different strain histories is described. It is shown that the material exhibits complex response mainly due to non-linearity, anisotropy, time/rate-dependence, hysteresis and permanent strain. Furthermore, the relaxed state of the material is characterized by the existence of an equilibrium hysteresis independently of the applied strain rate. A three-dimensional phenomenological model to represent experimentally observed response is developed. The microstructure configuration of the material is simplified and assumed to be entirely represented by a distributed fiber orientation in the ground matrix. In order to account for distributed short fiber orientations in a continuum sense, a concept of (symmetric) generalized structural tensor (tensor of orientation) of second order is adopted. The proposed model is based on assumption that the strain energy function of the composite is given by a linear mixture of the strain energy of each constituent: an isotropic part representing Phase 1 which is essentially related to the ground matrix and an anisotropic part describing Phase 2 which is mainly related to the fibers and the interphase as a whole. Hence, taking into account the fiber content and orientation, the efficiency of the model is assessed and perspectives are drawn.  相似文献   

13.
弹塑性微凸体侧向接触相互作用能耗   总被引:3,自引:2,他引:1  
传统的结合面研究多基于光滑刚性平面与等效粗糙表面接触假设,忽略了结合面上微凸体侧向接触及相邻微凸体之间的相互作用,这导致理论模型与实际结合面存在较大出入.针对承受法向静、动态力的机械结合面,从微观上研究了微凸体侧向接触及相互作用的接触能耗.将法向静、动态力分解为法向分力和切向分力,获取弹性/弹塑性/塑性阶段考虑微凸体侧接触及相互作用的加、卸载法向分力-变形和切向分力-位移的关系.通过力的合成定理,从而获取加、卸载法向合力与总变形之间的关系,由于法向分力产生的塑性变形及切向分力产生的摩擦,导致加载、卸载法向合力-总变形曲线存在迟滞回线.通过对一个加、卸载周期内的法向合力-总变形曲线积分,获得一个周期的微凸体接触能耗,包括应变能耗及摩擦能耗.仿真分析表明:微凸体在3个阶段的能耗均随变形的增大而非线性增大.微凸体侧向接触角度越大,能耗越大,且在弹性阶段最为明显.在弹性阶段,仅存在侧向的摩擦能耗,故结合面在低载荷作用下必须采用双粗糙表面假设.在塑性阶段,由于微凸体接触能耗为应变能耗,且接触角对其能耗影响甚微,故结合面在大载荷作用下可采用单平面假设对其进行研究.相对于KE和Etsion模型,本文提出的模型与Bartier的实验结果更吻合.  相似文献   

14.
A microstructure-dependent Timoshenko beam model is developed using a variational formulation. It is based on a modified couple stress theory and Hamilton's principle. The new model contains a material length scale parameter and can capture the size effect, unlike the classical Timoshenko beam theory. Moreover, both bending and axial deformations are considered, and the Poisson effect is incorporated in the current model, which differ from existing Timoshenko beam models. The newly developed non-classical beam model recovers the classical Timoshenko beam model when the material length scale parameter and Poisson's ratio are both set to be zero. In addition, the current Timoshenko beam model reduces to a microstructure-dependent Bernoulli-Euler beam model when the normality assumption is reinstated, which also incorporates the Poisson effect and can be further reduced to the classical Bernoulli-Euler beam model. To illustrate the new Timoshenko beam model, the static bending and free vibration problems of a simply supported beam are solved by directly applying the formulas derived. The numerical results for the static bending problem reveal that both the deflection and rotation of the simply supported beam predicted by the new model are smaller than those predicted by the classical Timoshenko beam model. Also, the differences in both the deflection and rotation predicted by the two models are very large when the beam thickness is small, but they are diminishing with the increase of the beam thickness. Similar trends are observed for the free vibration problem, where it is shown that the natural frequency predicted by the new model is higher than that by the classical model, with the difference between them being significantly large only for very thin beams. These predicted trends of the size effect in beam bending at the micron scale agree with those observed experimentally. Finally, the Poisson effect on the beam deflection, rotation and natural frequency is found to be significant, which is especially true when the classical Timoshenko beam model is used. This indicates that the assumption of Poisson's effect being negligible, which is commonly used in existing beam theories, is inadequate and should be individually verified or simply abandoned in order to obtain more accurate and reliable results.  相似文献   

15.
Analytical flow models are frequently applied when describing constricted channel flow at low and moderate Reynolds numbers. A common assumption underlying such flow models is two-dimensional or axi-symmetrical flow. In this work, two analytical model approaches are formulated in order to overcome this assumption in the case of naturally occurring channel flows for which the assumption might be critiqued. Advantages and flaws of both model approaches are discussed and their outcome is compared with experimental data.  相似文献   

16.
In this paper, non-linear deformation behavior of magnetostrictive materials is studied and three magnetoelastic coupling constitutive models are developed. The standard square (SS) constitutive model is developed by means of truncating the polynomial expansion of the Gibbs free energy. The hyperbolic tangent (HT) constitutive equations, which involve a hyperbolic tangent magnetic-field dependence, are proposed to model the magnetic-field-induced strain saturation of magnetostrictive materials in the region of intense magnetic fields. A new model based on density of domain switching (DDS) is established in terms of the basic truth that magnetic domain switching underlies magnetostrictive deformation. In this model, it is assumed that the relation between density of domain switching, defined by the quantity of magnetic domains switched by per unit magnetic field and magnetic field can be described by a density function with normal distribution. The moduli in these constitutive models can be determined by a material function that is proposed to describe the dependence of the peak piezomagnetic coefficient on the compressive pre-stress for one-dimensional cases based on the experimental results published. The accuracy of the non-linear constitutive relations is evaluated by comparing the theoretical values with experimental results of a Terfenol-D rod operated under both compressive pre-stress and bias magnetic field. Results indicate that the SS constitutive equations can accurately predict the experimental results under a low or moderate magnetic field while the HT model can, to some extent, reflect the trend of saturation of magnetostrictive strain under a high magnetic field. The model based on DDS, which is more effective in simulating the experimental curves, can capture the main characteristics of the mechanism of magnetoelastic coupling deformation of a Terfenol-D rod, such as the notable dependence of magnetoelastic response on external stress and the saturation of magnetostrictive strain under intense magnetic fields. In addition, the SS constitutive relation for a general three-dimensional problem is discussed and an approach to characterize the modulus tensors is proposed.  相似文献   

17.
A numerical solution for shallow-water flow is developed based on the unsteady Reynolds-averaged Navier–Stokes equations without the conventional assumption of hydrostatic pressure. Instead, the non-hydrostatic pressure component may be added in regions where its influence is significant, notably where bed slope is not small and separation in a vertical plane may occur or where the free-surface slope is not small. The equations are solved in the σ-co-ordinate system with semi-implicit time stepping and the eddy viscosity is calculated using the standard k–ϵ turbulence model. Conventionally, boundary conditions at the bed for shallow-water models only include vertical diffusion terms using wall functions, but here they are extended to include horizontal diffusion terms which can be significant when bed slope is not small. This is consistent with the inclusion of non-hydrostatic pressure. The model is applied to the 2D vertical plane flow of a current over a trench for which experimental data and other numerical results are available for comparison. Computations with and without non-hydrostatic pressure are compared for the same trench and for trenches with smaller side slopes, to test the range of validity of the conventional hydrostatic pressure assumption. The model is then applied to flow over a 2D mound and again the slope of the mound is reduced to assess the validity of the hydrostatic pressure assumption. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The rari-constant theory of linear elasticity is based on the assumption that elasticity in solids is caused by only pair potentials with coaxial forces acting between atoms. The strain energy of each pair potential depends on the square of the strain between the atoms in the pair. This strain can be determined by taking the inner product of the strain tensor with a structural tensor that is the tensor product of a unit vector with itself. It is shown that the 15 independent constants in the rari-constant theory can be generated by a complete set of 15 structural tensors. It is also shown that the 6 additional independent constants in the multi-constant theory can be generated by taking the inner product of 6 of these structural tensors with the square of the strain tensor. A generalization of these results for nonlinear elasticity is discussed with reference to recent work which compares the structural and generalized structural tensor approaches to modeling fibrous tissues.  相似文献   

20.
A one-dimensional stress-based elasticity model with limited strain extensibility is developed in this paper, based on thermodynamics arguments. Such nonlinear elastic models can be used to model certain rubber-like and biological materials with limiting chain extensibility. The derived constitutive function is a non-smooth piecewise expression, which can be regularized for numerical or physical considerations. This non-smooth constitutive expression is derived from a Gibbs potential. A three-dimensional extension of this stress-based model is also proposed in the paper. Some simple structural examples are investigated for a bar composed of this non-smooth elastic body. A homogeneous bar composed of this new class of nonlinear elastic material that is loaded is studied for different tension states, namely for concentrated or distributed axial loading. It is shown that the displacement limit extensibility can be observed at the structural scale, with finite or infinite axial load parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号