首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Tetrahedron letters》1987,28(16):1749-1752
Series of peptide-based lariat ethers derived from aza-18-crown-6 and bibracchial lariat ethers (BiBLEs) based on 4,13-diaza-18-crown-6 have been prepared. Sidearms incorporate inter alia the amino acids glycine, alanine, phenylalanine, leucine, isoleucine, and valine. Cation binding affinities for Na+ and K+ are reported.  相似文献   

2.
In the presence of KF·2H2O, furoylmethyltriphenylarsonium bromide (1a) or thienoylmethyltriphenylarsonium bromide (1b) reacted with 2-[(un)substituted benzylidene]malononitrile (2) in chloroform at room temperature to give trans-3,3-dicyano-1-furoyl-2-[(un)substituted phenyl]cyclopropane (3a) or trans-3,3-dicyano-1-thienoyl-2- [(un)substituted phenyl]cyclopropane (3b) respectively in good yield with high stereoselectivity. The structures of product 3 were confirmed by IR, MS, 1^H NMR, 1^H-1^H COSY and microanalysis. The relative configuration of product 3 was determined by 1^H-1^H NOESY technique. The mechanism for the formation of product 3 was also proposed.  相似文献   

3.
1H‐1, 3‐Benzazaphospholes react with M(CO)5(THF) (M = Cr, Mo, W) to give thermally and relatively air stable η1‐(1H‐1, 3‐Benzazaphosphole‐P)M(CO)5 complexes. The 1H‐ and 13C‐NMR‐data are in accordance with the preservation of the phosphaaromatic π‐system of the ligand. The strong upfield 31P coordination shift, particularly of the Mo and W complexes, forms a contrast to the downfield‐shifts of phosphine‐M(CO)5 complexes and classifies benzazaphospholes as weak donor but efficient acceptor ligands. Nickelocene reacts as organometallic species with metalation of the NH‐function. The resulting ambident 1, 3‐benzazaphospholide anions prefer a μ2‐coordination of the η5‐CpNi‐fragment at phosphorus to coordination at nitrogen or a η3‐heteroallyl‐η5‐CpNi‐semisandwich structure. This is shown by characteristic NMR data and the crystal structure analysis of a η5‐CpNi‐benzazaphospholide. The latter is a P‐bridging dimer with a planar Ni2P2 ring and trans‐configuration of the two planar heterocyclic phosphido ligands arranged perpendicular to the four‐membered ring.  相似文献   

4.
The complex [Ba3(sip)2(H2O)9] · H2O ( 1 ) (NaH2sip = 5‐sulfoisophthalic acid sodium) was synthesized and characterized by single‐crystal X‐ray diffraction. Structural determination reveals that the asymmetric unit in 1 contains two crystallographically independent BaII atoms. The Ba1 atom is eight‐coordinate with distorted monocapped pentagonal bipyramidal arrangement, whereas the Ba2 atom is ten‐coordinated with bicapped tetragonal prismatic arrangement. The two carboxylate groups of sip3– adopt different coordination modes, μ2‐η11‐bridging, and μ2‐η21‐bridging. The sulfonate group coordinates to three different BaII atoms in a tridentate μ3 mode to generate a ladder‐like one‐dimensional chain. The chains are connected by μ2‐η11‐bridging carboxylate groups to form a wave‐like two‐dimensional network, which are further linked by sip3– anions to generate a three‐dimensional structure. The thermal stability and luminescence properties of complex 1 were also investigated.  相似文献   

5.
We report an experimental study on the effect of solvents on the model SNAr reaction between 1‐chloro‐2,4‐dinitrobenzene and morpholine in a series of pure ionic liquids (IL). A significant catalytic effect is observed with reference to the same reaction run in water, acetonitrile, and other conventional solvents. The series of IL considered include the anions, NTf2?, DCN?, SCN?, CF3SO3?, PF6?, and FAP? with the series of cations 1‐butyl‐3‐methyl‐imidazolium ([BMIM]+), 1‐ethyl‐3‐methyl‐imidazolium ([EMIM]+), 1‐butyl‐2,3‐dimethyl‐imidazolium ([BM2IM]+), and 1‐butyl‐1‐methyl‐pyrrolidinium ([BMPyr]+). The observed solvent effects can be attributed to an “anion effect”. The anion effect appears related to the anion size (polarizability) and their hydrogen‐bonding (HB) abilities to the substrate. These results have been confirmed by performing a comparison of the rate constants with Gutmann's donicity numbers (DNs). The good correlation between rate constants and DN emphasizes the major role of charge transfer from the anion to the substrate.  相似文献   

6.
The reaction of di(alkyn‐1‐yl)vinylsilanes R1(H2C═CH)Si(C≡C―R)2 (R1 = Me ( 1 ), Ph ( 2 ); R = Bu (a), Ph (b), Me2HSi (c)) at 25°C with 1 equiv. of 9‐borabicyclo[3.3.1]nonane (9‐BBN) affords 1‐silacyclopent‐2‐ene derivatives ( 3a , 3b , 3c , 4a , 4b ), bearing one Si―C≡C―R function readily available for further transformations. These compounds are formed by consecutive 1,2‐hydroboration followed by intramolecular 1,1‐carboboration. Treated with a further equivalent of 9‐BBN in benzene they are converted at relatively high temperature (80–100°C) into 1‐alkenyl‐1‐silacyclopent‐2‐ene derivatives ( 5a , 5b 6a , 6b ) as a result of 1,2‐hydroboration of the Si―C≡C―R function. Protodeborylation of the 9‐BBN‐substituted 1‐silacyclopent‐2‐ene derivatives 3 , 4 , 5 , 6 , using acetic acid in excess, proceeds smoothly to give the novel 1‐silacyclopent‐2‐ene ( 7 , 8 , 9 , 10 ). The solution‐state structural assignment of all new compounds, i.e. di(alkyn‐1‐yl)vinylsilanes and 1‐silacyclopent‐2‐ene derivatives, was carried out using multinuclear magnetic resonance techniques (1H, 13C, 11B, 29Si NMR). The gas phase structures of some examples were calculated and optimized by density functional theory methods (B3LYP/6‐311+G/(d,p) level of theory), and 29Si NMR parameters were calculated (chemical shifts δ29Si and coupling constants nJ(29Si,13C)). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The reaction of tetra(alkyn‐1‐yl)silanes Si(C?C‐R1)4 1 [R1 = tBu ( a ), Ph ( b ), C6H4‐4‐Me ( c )] with 9‐borabicyclo[3.3.1]nonane (9‐BBN) in a 1:2 ratio affords the spirosilane derivatives 5a – c as a result of twofold intermolecular 1,2‐hydroboration, followed by twofold intramolecular 1,1‐organoboration. Intermediates 3a–c , in which two alkenyl‐ and two alkyn‐1‐yl groups are linked to silicon, were identified by NMR spectroscopy. The molecular structure of the spiro compound 5c was determined by X‐ray analysis, and the solution‐state structures of products and intermediates follow conclusively from the consistent NMR spectroscopic data sets (1H, 11B, 13C and 29Si NMR). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Emission quenching of [Ru(bpy)2(4, 4'-dcbpy)] (PF6)2 (1) by benzenamine,4-[2-[5-[4-[4-dimethylamino]phenyl]-4,5-di-hydro-1-phenyl-1H-pyrazol-3-yl]-ethenyl]-N,N-dimetyl (2) or 1, 5-diphenyl-3-(2-phenothiazine)-2-pyrazoline (3) was observed. Measurements of the emission decay of 1 before and after addition of 2 or 3 by single photon counting technique con-finned the observations. The emission quenching of 1 by 2 or 3 was submitted to Stern-Volmer equation. It was calculated that the quenching rate constants (kq) are 5.5 × 109(mol/L)-1s-1 for 2 and 4.0 × 109(mol/L)-1s-1 for 3, respectively. These results indicated a character of dynamic quenching process. The singlet-state of 2 or 3 was also quenched by 1. The quenching behaviors did not conform to the Stern- Volmer equation and involved both static and dynamic quenching processes. The apparent quenching rate constant (kapp) was calculated to be 3 × 109 (mol/L)-1 for the interaction of excited 2 with 1, and 1.2 × 109 (mol/L)-1 for that of excited 3 wit  相似文献   

9.
《合成通讯》2013,43(11):1447-1453
Abstract

An efficient preparation of 1‐[79Br]bromo‐2‐fluoroethylene, [79Br]BrHC?CHF, was carried out by a three‐step procedure: (a) natural 1‐bromo‐2‐fluoroethylene, BrHC?CHF, was iodinated to 1‐fluoro‐2‐iodoethylene, FHC?CHI; (b) 1‐fluoro‐2‐iodoethylene was 79Br2‐brominated to 1,2‐di[79Br]bromo‐1‐fluoro‐2‐iodoethane, [79Br]BrFCHCH[79Br]BrI; and (c) 1,2‐di[79Br]bromo‐1‐fluoro‐2‐iodoethane was dehalogenated to 1‐[79Br]bromo‐2‐fluoroethylene, [79Br]BrHC?CHF. The yield of isolated product, on a 2‐mmol scale, was 62% with respect to 79Br2.  相似文献   

10.
Two rare earth metal‐organic framework compounds [Ybsip(H2O)5] · 3H2O ( 1 ) and [Dysip(H2O)4] ( 2 ) (NaH2sip: 5‐sulfoisophthalic acid sodium salt) were synthesized hydrothermally, and characterized by single‐crystal X‐ray diffraction, elemental analysis, and FT‐IR spectroscopy. In complex 1 , each YbIII atom is nine‐coordinate with a distorted monocapped tetragonal prismatic arrangement. Two carboxylate groups of each sip3– molecule adopt the same μ1‐η11 chelating coordination model connecting two YbIII atoms. The oxygen atoms of the sulfonate group do not participate in coordination with YbIII. The whole sip3– molecule acts as a μ2 bridge to form an one‐dimensional (1D) chain structure. The 1D chains are linked by hydrogen bonding to generate two‐dimensional layers, and are further combined together to form a three‐dimensional structure. In complex 2 , the DyIII atom is nine‐coordinate with a distorted monocapped tetragonal antiprismatic arrangement. In each sip3– anion, two carboxylate groups take the same μ1‐η11 chelating coordination mode, only an oxygen atom of sulfonate group bond to DyIII ion. The whole ligand sip3– acts as a μ3 bridge linking three different DyIII ions to generate a wave‐like two‐dimensional network with (6,3) topological structure. The two‐dimensional networks are further linked by O–H ··· O hydrogen bonds to form a three‐dimensional structure. The thermal and luminescent properties of both complexes are investigated.  相似文献   

11.
The inclusion of the fluorescent organic dye, ethyl 3‐(7‐hydroxy‐2‐oxo‐2H‐chromen‐3‐yl)‐3‐oxopropanoate ( 1 ) by the host β‐cyclodextrin (β‐CD), and its response toward mercuric ions (Hg2+), was studied by UV/Vis, fluorescence, and 1H NMR spectroscopic analyses, mass spectrometry and molecular modeling studies. 1H NMR measurements together with molecular modeling studies for dye 1 demonstrate that it exhibits two tautomeric forms (keto and enol); however, when the dye is included into the β‐CD cavity, the enol form predominates. Moreover, by using spectroscopic and spectrometry techniques, a 1:1 stoichiometry was determined for the complexes formed between dye 1 (enol form) and β‐CD, with a binding constant (Kb1=1.8×104 m ?1) and for the dye 1 (keto form)‐Hg2+ (Kb2=2.3×103 m ?1). Interestingly, in the presence of 1 –β‐CD complex and mercuric ions, a ternary supramolecular system (Hg– 1 –β‐CD complex) was established, with a 1:1:1 stoichiometry and a Kb3 value of 4.3×103 m ?1, with the keto form of the dye being the only one present in this assembly. The three‐component system provides a starting point for the development of novel and directed supramolecular assemblies.  相似文献   

12.
Methyl 131‐(di)cyanomethylene‐pyropheophorbides were synthesized by Knoevenagel reactions of the corresponding 131‐oxo‐chlorins prepared from modifying chlorophyll‐a with malononitrile or cyanoacetic acid. Alternatively, methyl 131‐cyanomethylene‐pyropheophorbides were produced by Wittig reactions of 131‐oxo‐chlorins with Ph3P=CHCN. Self‐aggregation of zinc complexes of the semi‐synthetic chlorophyll derivatives possessing a hydroxy or methoxy group at the 31‐position was examined in 1%(v/v) tetrahydrofuran or dichloromethane and hexane by electronic absorption and circular dichroism spectroscopy. Although intermolecular hydrogen‐bonding between the 31‐hydroxy and 131‐oxo groups of bacteriochlorophylls‐c/d/e/f was essential for their self‐aggregation in natural light‐harvesting antenna systems (=chlorosomes), zinc 31‐hydroxy‐131‐di/monocyanomethylene‐chlorins self‐aggregated in the less/lesser polar organic solvents to form chlorosome‐like large oligomers in spite of lacking the 131‐oxo moiety as the hydrogen‐bonding acceptor. Zinc 31‐methoxy‐131‐dicyanomethylene‐chlorin gave similar self‐aggregates regardless of lack of both the 31‐hydroxy and 131‐oxo groups. The present self‐aggregation was ascribable to stronger coordination of the 31‐oxygen atom to the central zinc than the conventional systems, where the electron‐withdrawing cyano group(s) increased the coordinative ability of the central zinc through the chlorin π‐system.  相似文献   

13.
In the present work, we study the reaction of singlet oxygen (1O2) with isolated DNA. Emphasis is placed on the identification and quantitative measurement of the DNA modifications that are produced by the reaction of 1O2 with DNA. For this purpose, calf‐thymus DNA was incubated with the endoperoxide of N,N′‐di(2,3‐dihydroxypropyl)‐1,4‐naphthalenedipropanamide, a chemical generator of 1O2. Thereafter, DNA was digested, and the resulting oxidized nucleosides were measured by means of a recently optimized high‐performance‐liquid‐chromatography tandem‐mass‐spectrometry assay. It was found that, among the different DNA lesions observed, 7,8‐dihydro‐8‐oxo‐2′‐deoxyguanosine is the major 1O2‐mediated DNA‐damage product. Interestingly, cyclobutane pyrimidine dimers, oxidized pyrimidine bases, 7,8‐dihydro‐8‐oxo‐2′‐deoxyadenosine, and 2,6‐diamino‐5‐formamido‐4‐hydroxypyrimidine are not formed, at least not in detectable amounts, following treatment of DNA with the 1O2 generator. The reported results strongly suggest that the decomposition of the endoperoxide provides a pure source of 1O2, and that reaction of 1O2 with isolated DNA induces the specific formation of 7,8‐dihydro‐8‐oxo‐2′‐deoxyguanosine.  相似文献   

14.
The thermal behavior of 4,6‐bis‐(5‐amino‐3‐nitro‐1,2,4‐triazol‐1‐yl)‐5‐nitropyrimidine (BANTNP) was studied under a non‐isothermal condition by DSC, PDSC and TG/DTG methods. The kinetic parameters (Ea and A) of the exothermic decomposition reaction are 304.52 kJ·mol?1 and 1024.47 s?1 at 0.1 MPa, 272.52 kJ·mol?1 and 1021.76 s?1 at 5.0 MPa, respectively. The kinetic equation at 0.1 MPa can be expressed as: dα/dT=1025.3(1?α)3/4exp(?3.8044×104/T)/β The critical temperature of thermal explosion is 588.28 K. The specific heat capacity of BANTNP was determined with a Micro‐DSC method, and the standard molar specific heat capacity is 397.54 J·mol?1·K?1 at 298.15 K. The adiabatic time‐to‐explosion of BANTNP was calculated to be 11.75 s.  相似文献   

15.
Two new coordination polymers of PbII complexes with bridging 4,4′‐[(1E)‐ethane‐1,2‐diyl]bis[pyridine] (ebp), thiocyanato, and acetato ligands, [Pb(μ‐SCN)2(μ‐ebp)1.5]n ( 1 ) and {[Pb(μ‐OAc)(μ‐ebp)](ClO4)}n ( 2 ), were synthesized and characterized by elemental analysis, FT‐IR, 1H‐ and 13C‐NMR, thermal analysis, and single‐crystal X‐ray diffraction. In 1 , the Pb2+ ions are doubly bridged by both the ebp and the SCN ligands into a two‐dimensional polymeric network. The seven‐coordinate geometry around the Pb2+ ion in 1 is a distorted monocapped trigonal prism, in which the Pb2+ ions have a less‐common holodirected geometry. In 2 , the Pb2+ ions are bridged by AcO ligands forming linear chains, which are also further bridged by the neutral ebp ligands into a two‐dimensional polymeric framework. The Pb2+ ions have a five‐coordinate geometry with two N‐atoms from two ebp ligands and three O‐atoms of AcO. Although ClO acts as a counter‐ion, it also makes weak interactions with the Pb2+ center. The arrangement of the ligands in 2 exhibits hemidirected geometry, and the coordination gap around the Pb2+ ion is possibly occupied by a configurationally active lone pair of electrons.  相似文献   

16.
Complexes [NiI3(mpta)2]I ( 1 ) and [NiI3(ppta)2]I ( 2 ) have been synthesized by reaction of nickel(II) halide salts with ‐1‐methyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodide (mpta+I?) and 1‐(n‐propyl)‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane bromide (ppta+Br?) respectively. The crystal structures of compounds 1 and 2 are described and are similar, with both compounds crystallizing in monoclinic space groups. The geometry about both nickel atoms is that of a trigonal bipyramid with the cationic phosphine ligands found in the axial positions and the iodide ligands arranged in the equatorial plane.  相似文献   

17.
The complex [Cu2( 1 )2]2+ ( 1 = 1,3‐bis(1‐methyl‐1H‐benzimidazol‐2‐yl)benzene) undergoes slow oxidation by dioxygen in DMF solution to give the hydroxylated product [Cu2( 2 ‐H)2]2+ ( 2 = 2,6‐bis(1‐methyl‐1H‐benzimidazol‐2‐yl)phenol) characterized by an X‐ray crystal‐structure analysis. The oxidation occurs much faster when CuII is mixed with 1 in the presence of H2O2, with 80% hydroxylation observed within a few minutes. The mononuclear complex formed with 1‐methyl‐2‐phenyl‐1H‐benzimidazole ( 3 ) shows no hydroxylation under these conditions. It is concluded that the hydroxylation requires the presence of a ligand capable of stabilizing a binuclear species, but no special coordinative activation of the copper is required.  相似文献   

18.
The new N‐salicylideneheteroarenamines 1 – 4 were prepared by reacting the biologically relevant 3‐hydroxy‐4‐pyridinecarboxaldehyde ( 5 ) with 1H‐imidazol‐1‐amine ( 6 ), 1H‐pyrazol‐1‐amine ( 7 ), 1H‐1,2,4‐triazol‐1‐amine ( 8 ), and 1H‐1,3,4‐triazol‐1‐amine ( 9 ). Solution 1H‐, 13C‐, and 15N‐NMR were used to establish that the hydroxyimino form A is the predominant tautomer. A combination of 13C‐ and 15N‐CPMAS‐NMR with X‐ray crystallographic studies confirms that the same form is present in the solid state. The stabilities and H‐bond geometries of the different forms, tautomers and rotamers, are discussed by using B3LYP/6‐31G** calculations.  相似文献   

19.
The conformation of [bis‐(N,N′‐difluoroboryl)]‐3,3′‐diethyl‐4,4′,8,8′,9,9′,10,10′‐octamethyl‐2,2′‐bidipyrrin (1) in solution was studied by analyzing the 13C? 19F and 19F? 19F through‐space spin–spin couplings. The 1H and 13C NMR spectra were assigned on the basis of nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single‐quantum correlation (HSQC), and heteronuclear multiple‐bond correlation (HMBC) experiments. The 19F spectrum of 1 was compared with that of 2‐ethyl‐1,3,5,6,7‐pentamethyl‐4,4‐difluoro‐4‐bor‐3a,4a‐diaza‐s‐indacen (2). The 19F? 19F through‐space spin? spin coupling in 1 was thus assigned and the coupling constant was obtained by simulating the coupling patterns. The obtained conformation of 1 was compared with those of the known complexes [bis‐(N,N′‐difluoroboryl)]‐3,3′,8,8′,9,9′‐hexaethyl‐4,4′,10,10′‐tetramethyl‐6,6′‐(4‐methylphenyl)‐2,2′‐bidipyrrin (3)and [bis‐(N,N′‐difluoroboryl)]‐9,9′‐diethyl‐4,4′,8,8′,10,10′‐hexamethyl‐3,3′‐bis(methoxycarbonylethyl)‐2,2′‐bidipyrrin (4). The conformational dynamics of 1, 3, and 4 was surveyed by observing the temperature dependence of the through‐space coupling constants between 253 and 333 K. The 13C? 19F and 19F? 19F through‐space spin–spin couplings thus confirm similar conformations of different BisBODIPYs in solution in contrast to earlier findings in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
An unexpected polyhydroxyl‐bridged tetranuclear ZnII complex and a benzoquinone compound derived from metal‐ion promoted reactivity of Schiff base ligands were synthesized and characterized. The reaction of zinc(II) acetate dihydrate with oxime‐type Schiff base ligand HL1 [HL1 = 1‐(3‐((3,5‐dibromosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime] in methanol, acetone, and acetonitrile resulted in the chemoselective cleavage of the C=N bond of the Schiff base HL1, and then the further addition of acetone to two salicylaldehyde molecules derived from cleavage of the C=N bond in situ α,α double aldol reaction promoted by ZnII ions. The newly formed ligands H4L2 coordinate to four ZnII ions forming a defect‐dicubane core structure [ZnII4(H2L2)23‐OCH3)2(μ‐OCH3)2(CH3OH)2] ( 1 ) bridged exclusively by oxygen‐based ligands. The similar ligand HL3 [HL3 = 1‐(3‐((3,5‐dichlorosalicylaldehyde)amino)phenyl)ethan‐1‐one O‐benzyl oxime)] was employed to react with CdII acetate dihydrate under the same reaction conditions. No aldol addition occurred but a unexpected benzoquinone compound 2,5‐bis(((3‐(1‐((benzyloxy)imino)ethyl)phenyl)imino)methyl)‐1,4‐benzoquinone ( 2 ) formed. The results provided interesting insights into one‐pot routes involving in situ reactions act as a strategy for obtaining a variety of polymeric/polynuclear complexes which are inconvenient to obtain from directly presynthesizing the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号