首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let V denote a finite dimensional vector space over a field K of characteristic 0, let Tn(V) denote the vector space whose elements are the K-valued n-linear functions on V, and let Sn(V) denote the subspace of Tn(V) whose members are the fully symmetric members of Tn(V). If Ln denotes the symmetric group on {1,2,…,n} then we define the projection PL : Tn(V) → Sn(V) by the formula (n!)?1Σσ ? Ln Pσ, where Pσ : Tn(V) → Tn(V) is defined so that Pσ(A)(y1,y2,…,yn = A(yσ(1),yσ(2),…,yσ(n)) for each A?Tn(V) and yi?V, 1 ? i ? n. If xi ? V1, 1 ? i ? n, then x1?x2? … ?xn denotes the member of Tn(V) such that (x1?x2· ? ? ?xn)(y1,y2,…,yn) = Пni=1xi(yi) for each y1 ,2,…,yn in V, and x1·x2xn denotes PL(x1?x2? … ?xn). If B? Sn(V) and there exists x i ? V1, 1 ? i ? n, such that B = x1·x2xn, then B is said to be decomposable. We present two sets of necessary and sufficient conditions for a member B of Sn(V) to be decomposable. One of these sets is valid for an arbitrary field of characteristic zero, while the other requires that K = R or C.  相似文献   

2.
Elliptic boundary value problems for systems of nonlinear partial differential equations of the form Fi(x, u1, u2,…, uN,?ui?xj, ?pi?2ui?xj ?xk) = ?i(x), x ? Rn, i = 1(1)N, j, k = 1(1)n, pi ? 0, ? being a small parameter, with Dirichlet boundary conditions are considered. It is supposed that a formal approximation Z is given which satisfies the boundary conditions and the differential equations upto the order χ(?) = o(1) in some norm. Then, using the theory of differential inequalities, it is shown that under certain conditions the difference between the exact solution u of the boundary value problem and the formal approximation Z, taken in the sense of a suitable norm, can be made small.  相似文献   

3.
If k is a perfect field of characteristic p ≠ 0 and k(x) is the rational function field over k, it is possible to construct cyclic extensions Kn over k(x) such that [K : k(x)] = pn using the concept of Witt vectors. This is accomplished in the following way; if [β1, β2,…, βn] is a Witt vector over k(x) = K0, then the Witt equation yp ? y = β generates a tower of extensions through Ki = Ki?1(yi) where y = [y1, y2,…, yn]. In this paper, it is shown that there exists an alternate method of generating this tower which lends itself better for further constructions in Kn. This alternate generation has the form Ki = Ki?1(yi); yip ? yi = Bi, where, as a divisor in Ki?1, Bi has the form (Bi) = qΠpjλj. In this form q is prime to Πpjλj and each λj is positive and prime to p. As an application of this, the alternate generation is used to construct a lower-triangular form of the Hasse-Witt matrix of such a field Kn over an algebraically closed field of constants.  相似文献   

4.
The present work is intended to be a comprehensive and systematic treatment of the “radiation condition” (a particular case being Sommerfeld's radiation condition) which guarantees the uniqueness of the solution of the exterior boundary value problems for the second-order linear elliptic differential equation (which one can also consider as the reduced general wave equation)
L(u) = Σi,j=1n aij(x)?2u?xi ?xj + i=1n bi(x) ?u?xi + c(x)u = 0
in n-dimensional Euclidean space En. First of all, Sobolev's integral formula is generalized. This is accomplished by means of the concept of retarded argument and auxiliary functions σn and τ (in an appendix). Furthermore, some additional restrictions are imposed on σn and τ. Second, using this generalized integral formula, conditions which are a generalization of the classical Sommerfeld's radiation condition are found. Then the maximum principle for the solution in an unbounded domain is stated which finally leads to the uniqueness theorem for the exterior boundary value problem. Special cases of (A) such as Δu + k2u = 0 and Δu + k2(x)u = 0 can also be deduced.  相似文献   

5.
Davio and Deschamps have shown that the solution set, K, of a consistent Boolean equation ?(x1, …, xn)=0 over a finite Boolean algebra B may be expressed as the union of a collection of subsets of Bn, each of the form {(x1, …, xn) | aixibi, ai?B, bi?B, i = 1, …, n}. We refer to such subsets of Bn as segments and to the collection as a segmental cover of K. We show that ?(x1, …, xn) = 1 is consistent if and only if ? can be expressed by one of a class of sum-of-products expressions which we call segmental formulas. The object of this paper is to relate segmental covers of K to segmental formulas for ?.  相似文献   

6.
In this paper it is shown that the linear systems Σi defined by Σi: x?i = Aixi + Biui, i = 1, 2, are topologically equivalent if and only if they have the same Kronecker indices and the flows defined by considering trajectories modulo their controllable subspace are topologically equivalent. From some recent work of N. H. Kuiper (in “Manifolds—Tokyo 1973,” Univ. of Tokyo Press, Tokyo 1975) it is known exactly what this last condition amounts to. With these results at hand it is then not difficult to investigate the structural stability of ∑: x? = Ax + Bu and, in fact, structural stability turns out to be generic.  相似文献   

7.
The Dirichlet integral provides a formula for the volume over the k-dimensional simplex ω={x1,…,xk: xi?0, i=1,…,k, s?∑k1xi?T}. This integral was extended by Liouville. The present paper provides a matrix analog where now the region becomes Ω={V1,…,Vk: Vi>0, i=1,…,k, 0?∑Vi?t}, where now each Vi is a p×p symmetric matrix and A?B means that A?B is positive semidefinite.  相似文献   

8.
Let A and B be uniformly elliptic operators of orders 2m and 2n, respectively, m > n. We consider the Dirichlet problems for the equations (?2(m ? n)A + B + λ2nI)u? = f and (B + λ2nI)u = f in a bounded domain Ω in Rk with a smooth boundary ?Ω. The estimate ∥ u? ? u ∥L2(Ω) ? C? ¦ λ ¦?2n + 1(1 + ? ¦ λ ¦)?1 ∥ f ∥L2(Ω) is derived. This result extends the results of [7, 9, 10, 12, 14, 15, 18]by giving estimates up to the boundary, improving the rate of convergence in ?, using lower norms, and considering operators of higher order with variable coefficients. An application to a parabolic boundary value problem is given.  相似文献   

9.
Given the iterative scheme xi+1 = BTxi + r where B, T are fixed n×:n real matrices, r a fixed real n-vector and xi a real n-vector we investigate the convergence and monotonicity of schemes of the type
vi+1wi+1 = BOOBS11?S12?S21S22viwi + rr
, where Sij are n×:n real matrices related to T. The n-vector iterates vi,wi bracket in a certain sense solutions x of x = BTx + r. We also give necessary and sufficient conditions for the monotonicity of the original iterative scheme itself xi+1 = BTxi + r. This leads to monotonici results for classical iterative schemes such as the Jacobi, Gauss-Seidel, and successive overrelaxation methods.  相似文献   

10.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

11.
Let Fn denote the ring of n×n matrices over the finite field F=GF(q) and let A(x)=ANxN+ ?+ A1x+A0?Fn[x]. A function ?:Fn→Fn is called a right polynomial function iff there exists an A(x)?Fn[x] such that ?(B)=ANBN+?+A1B+ A0 for every B?Fn. This paper obtains unique representations for and determines the number of right polynomial functions.  相似文献   

12.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

13.
The system ?x?t = Δx + F(x,y), ?y?t = G(x,y) is investigated, where x and y are scalar functions of time (t ? 0), and n space variables 1,…, ξn), Δx ≡ ∑i = 1n?2xi2, and F and G are nonlinear functions. Under certain hypotheses on F and G it is proved that there exists a unique spherically symmetric solution (x(r),y(r)), where r = (ξ12 + … + ξn2)12, which is bounded for r ? 0 and satisfies x(0) >x0, y(0) > y0, x′(0) = 0, y′(0) = 0, and x′ < 0, y′ > 0, ?r > 0. Thus, (x(r), y(r)) represents a time independent equilibrium solution of the system. Further, the linearization of the system restricted to spherically symmetric solutions, around (x(r), y(r)), has a unique positive eigenvalue. This is in contrast to the case n = 1 (i.e., one space dimension) in which zero is an eigenvalue. The uniqueness of the positive eigenvalue is used in the proof that the spherically symmetric solution described is unique.  相似文献   

14.
A technique for the numerical approximation of matrix-valued Riemann product integrals is developed. For a ? x < y ? b, Im(x, y) denotes
χyχv2?χv2i=1mF(νi)dν12?dνm
, and Am(x, y) denotes an approximation of Im(x, y) of the form
(y?x)mk=1naki=1mF(χik)
, where ak and yik are fixed numbers for i = 1, 2,…, m and k = 1, 2,…, N and xik = x + (y ? x)yik. The following result is established. If p is a positive integer, F is a function from the real numbers to the set of w × w matrices with real elements and F(1) exists and is continuous on [a, b], then there exists a bounded interval function H such that, if n, r, and s are positive integers, (b ? a)n = h < 1, xi = a + hi for i = 0, 1,…, n and 0 < r ? s ? n, then
χr?χs(I+F dχ)?i=rsI+j=1pIji?1i)
=hpH(χr?1s)+O(hp+1)
Further, if F(j) exists and is continuous on [a, b] for j = 1, 2,…, p + 1 and A is exact for polynomials of degree less than p + 1 ? j for j = 1, 2,…, p, then the preceding result remains valid when Aj is substituted for Ij.  相似文献   

15.
Let A be an arbitrary n×n matrix, partitioned so that if A=[Aij], then all submatrices Aii are square. If x is a positive vector, it is well-known that G(x) =∪Ni=1Gi(x), where
Gi(x) = z6(zI ? Aii)?16?1 ? 1xij = 1j ≠ iN`6Aij6xj
, contains all the eigenvalues of A. The purpose of this paper is to give a new definition of the concept of an isolated subregion of G(x). An algorithm is given for obtaining the best such isolated subregion in a certain sense, and examples are given to show that tighter bounds for some eigenvalues of A may be obtained than with previous algorithms. For ease of computation, each subregion Gi(x) is replaced by the union of circular disks centered at the eigenvalues of Aii.  相似文献   

16.
For a class C of subsets of a set X, let V(C) be the smallest n such that no n-element set F?X has all its subsets of the form AF, AC. The condition V(C) <+∞ has probabilistic implications. If any two-element subset A of X satisfies both AC = Ø and A ? D for some C, DC, then V(C)=2 if and only if C is linearly ordered by inclusion. If C is of the form C={∩ni=1 Ci:CiCi, i=1,2,…,n}, where each Ci is linearly ordered by inclusion, then V(C)?n+1. If H is an (n-1)-dimensional affine hyperplane in an n-dimensional vector space of real functions on X, and C is the collection of all sets {x: f(x)>0} for f in H, then V(C)=n.  相似文献   

17.
This paper presents a demonstrably convergent method of feasible directions for solving the problem min{φ(ξ)| gi(ξ)?0i=1,2,…,m}, which approximates, adaptively, both φ(x) and ▽φ(x). These approximations are necessitated by the fact that in certain problems, such as when φ(x) = max{f(x, y) ¦ y ? Ωy}, a precise evaluation of φ(x) and ▽φ(x) is extremely costly. The adaptive procedure progressively refines the precision of the approximations as an optimum is approached and as a result should be much more efficient than fixed precision algorithms.It is outlined how this new algorithm can be used for solving problems of the form miny ? Ωxmaxy ? Ωyf(x, y) under the assumption that Ωmξ={x|gi(x)?0, j=1,…,s} ∩Rn, Ωy={y|ζi(y)?0, i-1,…,t} ∩ Rm, with f, gj, ζi continuously differentiable, f(x, ·) concave, ζi convex for i = 1,…, t, and Ωx, Ωy compact.  相似文献   

18.
This paper presents sufficient conditions for the existence of a nonnegative and stable equilibrium point of a dynamical system of Volterra type, (1) (ddt) xi(t) = ?xi(t)[fi(x1(t),…, xn(t)) ? qi], i = 1,…, n, for every q = (q1,…, qn)T?Rn. Results of a nonlinear complementarity problem are applied to obtain the conditions. System (1) has a nonnegative and stable equilibrium point if (i) f(x) = (f1(x),…,fn(x))T is a continuous and differentiable M-function and it satisfies a certain surjectivity property, or (ii), f(x) is continuous and strongly monotone on R+0n.  相似文献   

19.
Let (A, G, α) be a C1-dynamical system, where G is abelian, and let φ be an invariant state. Suppose that there is a neighbourhood Ω of the identity in G? and a finite constant κ such that Πi = 1n φ(xi1xi) ? κ Πi = 1n φ(xixi1) whenever xi lies in a spectral subspace Rαi), where Ω1 + … + Ωn ? Ω. This condition of complete spectral passivity, together with self-adjointness of the left kernel of φ, ensures that φ satisfies the KMS condition for some one-parameter subgroup of G.  相似文献   

20.
Let X1, …, Xn be n disjoint sets. For 1 ? i ? n and 1 ? j ? h let Aij and Bij be subsets of Xi that satisfy |Aij| ? ri and |Bij| ? si for 1 ? i ? n, 1 ? j ? h, (∪i Aij) ∩ (∪i Bij) = ? for 1 ? j ? h, (∪i Aij) ∩ (∪i Bil) ≠ ? for 1 ? j < l ? h. We prove that h?Πi=1nri+siri. This result is best possible and has some interesting consequences. Its proof uses multilinear techniques (exterior algebra).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号