首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \(k\ge 1\) and \(n_1,\ldots ,n_k\ge 1\) be some integers. Let \(S(n_1,\ldots ,n_k)\) be a tree T such that T has a vertex v of degree k and \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1},\ldots ,P_{n_k}\), that is \(T{\setminus } v\cong P_{n_1}\cup \cdots \cup P_{n_k}\) so that every neighbor of v in T has degree one or two. The tree \(S(n_1,\ldots ,n_k)\) is called starlike tree, a tree with exactly one vertex of degree greater than two, if \(k\ge 3\). In this paper we obtain the eigenvalues of starlike trees. We find some bounds for the largest eigenvalue (for the spectral radius) of starlike trees. In particular we prove that if \(k\ge 4\) and \(n_1,\ldots ,n_k\ge 2\), then \(\frac{k-1}{\sqrt{k-2}}<\lambda _1(S(n_1,\ldots ,n_k))<\frac{k}{\sqrt{k-1}}\), where \(\lambda _1(T)\) is the largest eigenvalue of T. Finally we characterize all starlike trees that all of whose eigenvalues are in the interval \((-2,2)\).  相似文献   

2.
We apply the theory of generalized polynomial identities with automorphisms and skew derivations to prove the following theorem: Let A be a prime ring with the extended centroid C and with two-sided Martindale quotient ring Q, R a nonzero right ideal of A and \(\delta \) a nonzero \(\sigma \)-derivation of A, where \(\sigma \) is an epimorphism of A. For \(x,y\in A\), we set \([x,y] = xy - yx\). If \([[\ldots [[\delta (x^{n_0}),x^{n_1}],x^{n_{2}}],\ldots ],x^{n_k}]=0\) for all \(x\in R\), where \(n_{0},n_{1},\ldots ,n_{k}\) are fixed positive integers, then one of the following conditions holds: (1) A is commutative; (2) \(C\cong GF(2)\), the Galois field of two elements; (3) there exist \(b\in Q\) and \(\lambda \in C\) such that \(\delta (x)=\sigma (x)b-bx\) for all \(x\in A\), \((b-\lambda )R=0\) and \(\sigma (R)=0\). The analogous result for left ideals is also obtained. Our theorems are natural generalizations of the well-known results for derivations obtained by Lanski (Proc Am Math Soc 125:339–345, 1997) and Lee (Can Math Bull 38:445–449, 1995).  相似文献   

3.
We follow the dual approach to Coxeter systems and show for Weyl groups that a set of reflections generates the group if and only if the related sets of roots and coroots generate the root and the coroot lattices, respectively. Previously, we have proven if (WS) is a Coxeter system of finite rank n with set of reflections T and if \(t_1, \ldots t_n \in T\) are reflections in W that generate W, then \(P:= \langle t_1, \ldots t_{n-1}\rangle \) is a parabolic subgroup of (WS) of rank \(n-1\) (Baumeister et al. in J Group Theory 20:103–131, 2017, Theorem 1.5). Here we show if (WS) is crystallographic as well, then all the reflections \(t \in T\) such that \(\langle P, t\rangle = W\) form a single orbit under conjugation by P.  相似文献   

4.
Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, \(f(x_1,\ldots ,x_n)\) be a multilinear polynomial over C, which is not central valued on R. Suppose that d is a non-zero derivation of R, F and G are two generalized derivations of R such that \(d\{F(u)u-uG^2(u)\}=0\) for all \(u\in f(R)\). Then one of the following holds:
  1. (i)
    there exist \(a, b, p\in U\), \(\lambda \in C\) such that \(F(x)=\lambda x+bx+xa^2\), \(G(x)=ax\), \(d(x)=[p, x]\) for all \(x\in R\) with \([p, b]=0\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R;
     
  2. (ii)
    there exist \(a, b, p\in U\) such that \(F(x)=ax\), \(G(x)=xb\), \(d(x)=[p,x]\) for all \(x\in R\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R with \([p, a-b^2]=0\);
     
  3. (iii)
    there exist \(a\in U\) such that \(F(x)=xa^2\) and \(G(x)=ax\) for all \(x\in R\);
     
  4. (iv)
    there exists \(a\in U\) such that \(F(x)=a^2x\) and \(G(x)=xa\) for all \(x\in R\) with \(a^2\in C\);
     
  5. (v)
    there exist \(a, p\in U\), \(\lambda , \alpha , \mu \in C\) such that \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) and \(d(x)=[p,x]\) for all \(x\in R\) with \(a^2=\mu -\alpha p\) and \(\alpha p^2+(\lambda -2\mu ) p\in C\);
     
  6. (vi)
    there exist \(a\in U\), \(\lambda \in C\) such that R satisfies \(s_4\) and either \(F(x)=\lambda x+xa^2\), \(G(x)=ax\) or \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) for all \(x\in R\).
     
  相似文献   

5.
This paper considers the problem of positive semidefinite factorization (PSD factorization), a generalization of exact nonnegative matrix factorization. Given an m-by-n nonnegative matrix X and an integer k, the PSD factorization problem consists in finding, if possible, symmetric k-by-k positive semidefinite matrices \(\{A^1,\ldots ,A^m\}\) and \(\{B^1,\ldots ,B^n\}\) such that \(X_{i,j}=\text {trace}(A^iB^j)\) for \(i=1,\ldots ,m\), and \(j=1,\ldots ,n\). PSD factorization is NP-hard. In this work, we introduce several local optimization schemes to tackle this problem: a fast projected gradient method and two algorithms based on the coordinate descent framework. The main application of PSD factorization is the computation of semidefinite extensions, that is, the representations of polyhedrons as projections of spectrahedra, for which the matrix to be factorized is the slack matrix of the polyhedron. We compare the performance of our algorithms on this class of problems. In particular, we compute the PSD extensions of size \(k=1+ \lceil \log _2(n) \rceil \) for the regular n-gons when \(n=5\), 8 and 10. We also show how to generalize our algorithms to compute the square root rank (which is the size of the factors in a PSD factorization where all factor matrices \(A^i\) and \(B^j\) have rank one) and completely PSD factorizations (which is the special case where the input matrix is symmetric and equality \(A^i=B^i\) is required for all i).  相似文献   

6.
Let R be a non-commutative prime ring, Z(R) its center, Q its right Martindale quotient ring, C its extended centroid, \(F\ne 0\) an b-generalized skew derivation of R, L a non-central Lie ideal of R, \(0\ne a\in R\) and \(n\ge 1\) a fixed integer. In this paper, we prove the following two results:
  1. 1.
    If R has characteristic different from 2 and 3 and \(a[F(x),x]^n=0\), for all \(x\in L\), then either there exists an element \(\lambda \in C\), such that \(F(x)=\lambda x\), for all \(x\in R\) or R satisfies \(s_4(x_1,\ldots ,x_4)\), the standard identity of degree 4, and there exist \(\lambda \in C\) and \(b\in Q\), such that \(F(x)=bx+xb+\lambda x\), for all \(x\in R\).
     
  2. 2.
    If \(\mathrm{{char}}(R)=0\) or \(\mathrm{{char}}(R) > n\) and \(a[F(x),x]^n\in Z(R)\), for all \(x\in R\), then either there exists an element \(\lambda \in C\), such that \(F(x)=\lambda x\), for all \(x\in R\) or R satisfies \(s_4(x_1,\ldots ,x_4)\).
     
  相似文献   

7.
Let G be a bipartite graph with bipartition (AB). We give new criteria for a bipartite graph to have an f -factor, a (gf)-factor and other factors together with some applications of these criteria. These criteria can be considered as direct generalizations of Hall’s marriage theorem. Among some results, we prove that for a function \(h: A\cup B \rightarrow \{0,1,2, \ldots \}\), G has a factor F such that \(\deg _F(x)=h(x)\) for \(x\in A\) and \(\deg _H(y) \le h(y)\) for \(y\in B\) if and only if \(h(X) \le \sum _{x\in N_G(X)}\min \{h(x), e_G(x,X)\}\) for all \(X\subseteq A\).  相似文献   

8.
Given integers \(k\ge 2\), \(n \ge 2\), \(m \ge 2\) and \( a_1,a_2,\ldots ,a_m \in {\mathbb {Z}}{\backslash }{\{0\}}\), and let \(f(z)= \sum _{j=0}^{n}c_jz^j\) be a polynomial of integer coefficients with \(c_n>0\) and \((\sum _{i=1}^ma_i)|f(z)\) for some integer z. For a k-coloring of \([N]=\{1,2,\ldots ,N\}\), we say that there is a monochromatic solution of the equation \(a_1x_1+a_2x_2+\cdots +a_mx_m=f(z)\) if there exist pairwise distinct \(x_1,x_2,\ldots ,x_m\in [N]\) all of the same color such that the equation holds for some \(z\in \mathbb {Z}\). Problems of this type are often referred to as Ramsey-type problems. In this paper, it is shown that if \(a_i>0\) for \(1\le i\le m\), then there exists an integer \(N_0=N(k,m,n)\) such that for \(N\ge N_0\), each k-coloring of [N] contains a monochromatic solution \(x_1,x_2,\ldots ,x_m\) of the equation \(a_1x_1+a_2x_2+ \cdots +a_mx_m= f(z)\). Moreover, if n is odd and there are \(a_i\) and \(a_j\) such that \(a_ia_j<0\) for some \(1 \le i\ne j\le m\), then the assertion holds similarly.  相似文献   

9.
Let G be a complete k-partite simple undirected graph with parts of sizes \(p_1\le p_2\cdots \le p_k\). Let \(P_j=\sum _{i=1}^jp_i\) for \(j=1,\ldots ,k\). It is conjectured that G has distance magic labeling if and only if \(\sum _{i=1}^{P_j} (n-i+1)\ge j{{n+1}\atopwithdelims (){2}}/k\) for all \(j=1,\ldots ,k\). The conjecture is proved for \(k=4\), extending earlier results for \(k=2,3\).  相似文献   

10.
The group of bisections of groupoids plays an important role in the study of Lie groupoids. In this paper another construction is introduced. Indeed, for a topological groupoid G, the set of all continuous self-maps f on G such that (xf(x)) is a composable pair for every \(x\in G\), is denoted by \(S_G\). We show that \(S_G\) by a natural binary operation is a monoid. \(S_G(\alpha )\), the group of units in \(S_G\) precisely consists of those \(f\in S_G\) such that the map \(x\mapsto xf(x)\) is a bijection on G. Similar to the group of bisections, \(S_G(\alpha )\) acts on G from the right and on the space of continuous self-maps on G from the left. It is proved that \(S_G(\alpha )\) with the compact- open topology inherited from C(GG) is a left topological group. For a compact Hausdorff groupoid G it is proved that the group of bisections of \(G^2\) is isomorphic to the group \(S_G(\alpha )\) and the group of transitive bisections of G, \(Bis_T(G)\), is embedded in \(S_G(\alpha )\), where \(G^2\) is the groupoid of all composable pairs.  相似文献   

11.
Consider \(G=SL_2(\mathbb {Z})/\{\pm I\}\) acting on the complex upper half plane H by \(h_M(z)=\frac{az\,+\,b}{cz\,+\,d}\) for \(M \in G\). Let \(D=\{z \in H: |z|\ge 1, |\mathfrak {R}(z)|\le 1/2\}\). We consider the set \({\mathcal {E}} \subset G\) with the nine elements M, different from the identity, such that \(\mathrm{tr\,}(MM^T)\le 3\). We equip the tiling of H defined by \(\mathbb {D}=\{h_M(D){:}\, M \in G\}\) with a graph structure where the neighbours are defined by \(h_M(D) \cap h_{M'}(D) \ne \emptyset \), equivalently \(M^{-1}M' \in {\mathcal {E}}\). The present paper studies several Markov chains related to the above structure. We show that the simple random walk on the above graph converges a.s. to a point X of the real line with the same distribution of \(S_2 W^{S_1}\), where \(S_1,S_2,W\) are independent with \(\Pr (S_i=\pm 1)=1/2\) and where W is valued in (0, 1) with distribution \(\Pr (W<w)=\mathbf ? (w)\). Here \(\mathbf ? \) is the Minkowski function. If \(K_1, K_2, \ldots \) are i.i.d with distribution \(\Pr (K_i=n)= 1/2^n\) for \(n=1,2,\ldots \), then \(W= \frac{1}{K_1+\frac{1}{K_2+\ldots }}\): this known result (Isola in Appl Math 5:1067–1090, 2014) is derived again here.  相似文献   

12.
Let \((M,\Omega )\) be a connected symplectic 4-manifold and let \(F=(J,H) :M\rightarrow \mathbb {R}^2\) be a completely integrable system on M with only non-degenerate singularities. Assume that F does not have singularities with hyperbolic blocks and that \(p_1,\ldots ,p_n\) are the focus–focus singularities of F. For each subset \(S=\{i_1,\ldots ,i_j\}\), we will show how to modify F locally around any \(p_i, i \in S\), in order to create a new integrable system \(\widetilde{F}=(J, \widetilde{H}) :M \rightarrow \mathbb {R}^2\) such that its classical spectrum \(\widetilde{F}(M)\) contains j smooth curves of singular values corresponding to non-degenerate transversally hyperbolic singularities of \(\widetilde{F}\). Moreover the focus–focus singularities of \(\widetilde{F}\) are precisely \(p_i\), \(i \in \{1,\ldots ,n\} \setminus S\). The proof is based on Eliasson’s linearization theorem for non-degenerate singularities, and properties of the Hamiltonian Hopf bifurcation.  相似文献   

13.
Let \(\mathbb {F}_{p^m}\) be a finite field of cardinality \(p^m\), where p is a prime, and kN be any positive integers. We denote \(R_k=F_{p^m}[u]/\langle u^k\rangle =F_{p^m}+uF_{p^m}+\cdots +u^{k-1}F_{p^m}\) (\(u^k=0\)) and \(\lambda =a_0+a_1u+\cdots +a_{k-1}u^{k-1}\) where \(a_0, a_1,\ldots , a_{k-1}\in F_{p^m}\) satisfying \(a_0\ne 0\) and \(a_1=1\). Let r be a positive integer satisfying \(p^{r-1}+1\le k\le p^r\). First we define a Gray map from \(R_k\) to \(F_{p^m}^{p^r}\), then prove that the Gray image of any linear \(\lambda \)-constacyclic code over \(R_k\) of length N is a distance preserving linear \(a_0^{p^r}\)-constacyclic code over \(F_{p^m}\) of length \(p^rN\). Furthermore, the generator polynomials for each linear \(\lambda \)-constacyclic code over \(R_k\) of length N and its Gray image are given respectively. Finally, some optimal constacyclic codes over \(F_{3}\) and \(F_{5}\) are constructed.  相似文献   

14.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

15.
Let k be a field and \(k(x_0,\ldots ,x_{p-1})\) be the rational function field of p variables over k where p is a prime number. Suppose that \(G=\langle \sigma \rangle \simeq C_p\) acts on \(k(x_0,\ldots ,x_{p-1})\) by k-automorphisms defined as \(\sigma :x_0\mapsto x_1\mapsto \cdots \mapsto x_{p-1}\mapsto x_0\). Denote by P the set of all prime numbers and define \(P_0=\{p\in P:\mathbb {Q}(\zeta _{p-1})\) is of class number one\(\}\) where \(\zeta _n\) a primitive n-th root of unity in \(\mathbb {C}\) for a positive integer n; \(P_0\) is a finite set by Masley and Montgomery (J Reine Angew Math 286/287:248–256, 1976). Theorem. Let k be an algebraic number field and \(P_k=\{p\in P: p\) is ramified in \(k\}\). Then \(k(x_0,\ldots ,x_{p-1})^G\) is not stably rational over k for all \(p\in P\backslash (P_0\cup P_k)\).  相似文献   

16.
O. Blasco 《Positivity》2017,21(2):593-632
To each power-norm \(((E^n, \Vert \cdot \Vert _n):n\in {\mathbb N})\) based on a given Banach space E, we associate two maximal symmetric sequence spaces \(L_\Phi ^E\) and \(L_\Psi ^E\) whose norms \(\Vert (z_k)\Vert _{L_\Phi ^E}\) and \(\Vert (z_k)\Vert _{L_\Psi ^E}\) are defined by \(\sup \{ \Vert (z_1x,\ldots ,z_nx)\Vert _n: \Vert x\Vert =1, n\in {\mathbb N}\}\) and \(\sup \{ \Vert \sum _{k=1}^n z_kx_k\Vert : \Vert (x_1,\ldots ,x_n)\Vert _n=1, n\in {\mathbb N}\}\) respectively. For each \(1\le p\le \infty \), we introduce and study the p-power-norms as those power-norms for which \(L_\Phi ^E=\ell ^p\) and \(L_\Psi ^E=\ell ^{p'}\), where \(1/p+1/p'=1\). As a special cases of p-power-norms we introduce certain smaller class, to be called the class of \(\ell ^p\)-power-norms, which is shown to contain the p-multi-norms defined in (Dales et al., Multi-norms and Banach lattices, 2016), and to coincide with the multi-norms and dual-multi-norms defined in (Dales and Polyakov, Diss Math 488, 2012) in the cases \(p=\infty \) and \(p=1\) respectively. We give several procedures to construct examples of such p-power and \(\ell ^p\)-power-norms and show that the natural formulations of the (pq)-summing, (pq)-concave, Rademacher power norms, t-standard power norms among others are examples in these classes. In particular, for instance the Rademacher power norm is a 2-power norm and the (pq)-summing power-norm is a \(\ell ^r\)-power-norm for \(p>q\) with \(\frac{1}{r}=\frac{1}{q}-\frac{1}{p}\).  相似文献   

17.
Let mn be positive integers and p a prime. We denote by \(\nu (G)\) an extension of the non-abelian tensor square \(G \otimes G\) by \(G \times G\). We prove that if G is a residually finite group satisfying some non-trivial identity \(f \equiv ~1\) and for every \(x,y \in G\) there exists a p-power \(q=q(x,y)\) such that \([x,y^{\varphi }]^q = 1\), then the derived subgroup \(\nu (G)'\) is locally finite (Theorem A). Moreover, we show that if G is a residually finite group in which for every \(x,y \in G\) there exists a p-power \(q=q(x,y)\) dividing \(p^m\) such that \([x,y^{\varphi }]^q\) is left n-Engel, then the non-abelian tensor square \(G \otimes G\) is locally virtually nilpotent (Theorem B).  相似文献   

18.
Let H be a digraph possibly with loops and D a finite digraph without loops whose arcs are coloured with the vertices of H (D is an H-coloured digraph). The sets V(D) and A(D) will denote the sets of vertices and arcs of D respectively. A directed path W in D is an H-path if and only if the consecutive colors encountered on W form a directed walk in H. A set \(N\subseteq \hbox {V}(D)\) is an H-kernel if for every pair of different vertices in N there is no H-path between them, and for every vertex \(u\in \hbox {V}(D){\setminus }N\) there exists an H-path in D from u to N. Let D be an m-coloured digraph. The color-class digraph of D, denoted by \({\mathscr {C}}_C(D\)), is the digraph such that: the vertices of the color-class digraph are the colors represented in the arcs of D, and \((i,j) \in A({\mathscr {C}}_C(D\))) if and only if there exist two arcs namely (uv) and (vw) in D such that (uv) has color i and (vw) has color j. Let \(W=(v_0, \ldots , v_n\)) be a directed walk in \({\mathscr {C}}_C(D)\), with D an H-coloured digraph, and \(e_i = (v_{i},v_{i+1})\) for each \(i \in \{0, \ldots ,n-1\}\). Let \(I = \{i_1, \ldots , i_k\}\) a subset of \(\{0, \ldots , n-1\}\) such that for 0 \(\le s \le n-1\), \(e_s \in \hbox { A}(H^c)\) if and only if \(s \in I\) (where \(H^c\) is the complement of H), then we will say that k is the \(H^c\)-length of W. Since V(\({\mathscr {C}}_C(D)) \subseteq \hbox {V}(H)\), the main question is: What structural properties of \({\mathscr {C}}_C(D)\), with respect to H, imply that D has an H-kernel? In this paper we will prove the following: If \({\mathscr {C}}_C(D)\) does not have directed cycles of odd \(H^c\)-length, then D has an H-kernel. Finally we will prove Richardson’s theorem as a direct consequence of the previous result.  相似文献   

19.
We study generalizations of the classical Bernstein operators on the polynomial spaces \(\mathbb {P}_{n}[a,b]\), where instead of fixing \(\mathbf {1}\) and x, we reproduce exactly \(\mathbf {1}\) and a polynomial \(f_1\), strictly increasing on [ab]. We prove that for sufficiently large n, there always exist generalized Bernstein operators fixing \(\mathbf {1}\) and \(f_1\). These operators are defined by non-decreasing sequences of nodes precisely when \(f_1^\prime > 0\) on (ab), but even if \(f_1^\prime \) vanishes somewhere inside (ab), they converge to the identity.  相似文献   

20.
The optimal channel assignment is an important optimization problem with applications in optical networks. This problem was formulated to the L(p, 1)-labeling of graphs by Griggs and Yeh (SIAM J Discrete Math 5:586–595, 1992). A k-L(p, 1)-labeling of a graph G is a function \(f:V(G)\rightarrow \{0,1,2,\ldots ,k\}\) such that \(|f(u)-f(v)|\ge p\) if \(d(u,v)=1\) and \(|f(u)-f(v)|\ge 1\) if \(d(u,v)=2\), where d(uv) is the distance between the two vertices u and v in the graph. Denote \(\lambda _{p,1}^l(G)= \min \{k \mid G\) has a list k-L(p, 1)-labeling\(\}\). In this paper we show upper bounds \(\lambda _{1,1}^l(G)\le \Delta +9\) and \(\lambda _{2,1}^l(G)\le \max \{\Delta +15,29\}\) for planar graphs G without 4- and 6-cycles, where \(\Delta \) is the maximum vertex degree of G. Our proofs are constructive, which can be turned to a labeling (channel assignment) method to reach the upper bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号