首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absorption spectral properties of para-aminobenzophenone (p-ABP) were investigated in gas phase and in solution by time-dependent density functional theory. Calculations suggest that the singlet states vary greatly with the solvent polarities. In various polar solvents, including acetonitrile, methanol, ethanol, dimethyl sulfoxide, and dimethyl formamide, the excited S1 states with charge transfer character result from π→π* transitions. However, in nonpolar solvents, cyclohexane, and benzene, the S1 states are the result of n→π* transitions related to local excitation in the carbonyl group. The excited T1 states were calculated to have ππ* character in various solvents. From the variation of the calculated excited states, the band due to π→π* transition undergoes a redshift with an increase in solvent polarity, while the band due to n→π* transition undergoes a blueshift with an increase in solvent polarity. In addition, the triplet yields and the photoreactivities of p-ABP in various solvents are discussed.  相似文献   

2.
The geometric structures and infrared (IR) spectra in the electronically excited state of a novel doubly hydrogen‐bonded complex formed by fluorenone and alcohols, which has been observed by IR spectra in experimental study, are investigated by the time‐dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in both ground state and the S1 state of this doubly hydrogen‐bonded FN‐2MeOH complex are calculated using the DFT and TDDFT methods, respectively. Two intermolecular hydrogen bonds are formed between FN and methanol molecules in the doubly hydrogen‐bonded FN‐2MeOH complex. Moreover, the formation of the second intermolecular hydrogen bond can make the first intermolecular hydrogen bond become slightly weak. Furthermore, it is confirmed that the spectral shoulder at around 1700 cm?1 observed in the IR spectra should be assigned as the doubly hydrogen‐bonded FN‐2MeOH complex from our calculated results. The electronic excited‐state hydrogen bonding dynamics is also studied by monitoring some vibraitonal modes related to the formation of hydrogen bonds in different electronic states. As a result, both the two intermolecular hydrogen bonds are significantly strengthened in the S1 state of the doubly hydrogen‐bonded FN‐2MeOH complex. The hydrogen bond strengthening in the electronically excited state is similar to the previous study on the singly hydrogen‐bonded FN‐MeOH complex and play important role on the photophysics of fluorenone in solutions. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

3.
Excited-state hydrogen-bonding dynamics of N-methylformamide (NMF) in water has been investigated by time-dependent density functional theory (TDDFT) method. The ground-state geometry optimizations were calculated by density functional theory (DFT) method, while the electronic transition energies and corresponding oscillation strengths of the low-lying electronically excited states of isolated NMF, water monomers and the hydrogen-bonded NMF-H 2 O were calculated by TDDFT method. According to Zhao's rule on the excited-state hydrogen bonding dynamics, our results demonstrate that the intermolecular hydrogen bond C=O···O-H is strengthened and weakened in different electronically excited states. The hydrogen bond strengthening and weakening in the electronically excited state plays an important role in the photophysics of NMF in solutions.  相似文献   

4.
The interacting patterns and mechanism of the catechin and thymine have been investigated with the density functional theory Becke's three-parameter nonlocal exchange functional and the Lee, Yang, and Parr nonlocal correlation functional (B3LYP) method by 6-31+G*basis set. Thirteen stable structures for the catechin-thymine complexes have been found which form two hydrogen bonds at least. The vibrational frequencies are also studied at the same level to analyze these complexes. The results indicated that catechin interactedwith thymine by three different hydrogen bonds as N-H…O、C-H…O、O-H…O and the complexes are mainly stabilized by the hydrogen bonding interactions. Theories of atoms in molecules and natural bond orbital have been adopted to investigate the hydrogen bondsinvolved in all systems. The interaction energies of all complexes have been corrected for basis set superposition error, which are from -18.15 kJ/mol to -32.99 kJ/mol. The results showed that the hydrogen bonding contribute to the interaction energies dominantly. The corresponding bonds stretching motions in all complexes are red-shifted relative to that of the monomer, which is in agreement with experimental results.  相似文献   

5.
Various structures of CrAPO‐5 clusters are studied via density functional B3LYP exchange‐correlation method. The optimized structures are compared with data from X‐ray absorption. Their total energies and atomic net charges are also analyzed. Results indicate that the substitution of the aluminum site of an AFI framework by chromium is in general not feasible. The chromium ion is more likely docked in between two neighboring 12‐membered rings of the framework of AFI. To further verify our claim, the excitation energies of the representative chromium structures of CrAPO‐5 clusters are calculated via the TDDFT method. The results for excitation energies further support that Cr3+ is not incorporated into the framework.  相似文献   

6.
The geometric structures, infrared spectra and hydrogen bond binding energies of the various hydrogen‐bonded Res?‐water complexes in states S0 and S1 have been calculated using the density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods, respectively. Based on the changes of the hydrogen bond lengths and binding energies as well as the spectral shifts of the vibrational mode of the hydroxyl groups, it is demonstrated that hydrogen bonds HB‐II, HB‐III and HB‐IV are strengthened while hydrogen bond HB‐I is weakened in the four singly hydrogen‐bonded Res?‐Water complexes upon photoexcitation. When the four hydrogen bonds are formed simultaneously between one resorufin anion and four water molecules in the Res?‐4Water complex, all the hydrogen bonds are weakened in both the ground and excited states compared with those in the corresponding singly hydrogen‐bonded Res?‐Water complexes. Furthermore, in complex Res?‐4Water, hydrogen bonds HB‐II and HB‐IV are strengthened while hydrogen bonds HB‐I and HB‐III are weakened after the electronic excitation. The hydrogen bond strengthening and weakening in the various hydrogen‐bonded Res?‐water complexes should be due to the redistribution of the charges among the four heteroatoms (O1‐3 and N1) within the resorufin molecule upon the optical excitation.  相似文献   

7.
《中国化学会会志》2017,64(2):143-151
Studying the self‐assembly of uracil derivatives has great importance for biochemistry and nanotechnology. For example, modification of the sorbent surfaces by 5‐hydroxy‐6‐methyluracil (HMU ) enhances their adsorption activity. It is assumed that these changes are caused by the self‐assembly of the network‐like supramolecular associates of the uracil derivative on the sorbent surface. In the present work, the relative stabilities of 15 hydrogen‐bonded dimers HMU have been studied by the TPSSh /TZVP density functional theory method and the strengths of the noncovalent interactions analyzed in terms of the reduced density gradient and natural bond orbital approaches. It was found that the symmetric dimer stabilized by two intermolecular hydrogen bonds N1 –H∙∙∙O–C2 (dimer 1‐1) is the most stable. This suggests that the self‐assembly of HMU should occur through the intermediate formation of the dimer 1‐1. The results may be useful for understanding the processes of self‐assembly of the uracil derivatives and the rationalized design of the uracil‐based supramolecular structures with specific properties.  相似文献   

8.
The absorption and emission spectra of the wurtzite Mn-doped GaN were calculated with cluster models.The predicted lattice parameters become slightly larger than those of undoped cluster.The average bond length of Mn-N is longer than that of Ga-N.Spin density shows that one Mn atom in these clusters has four single electrons with the same direction of the spin polarity.The new energy level with light Mn-doping appears at 1.37 eV above the valance band.The absorption spectra of Mn-doped GaN cover the visible light region.The calculated emission spectra show that the green luminescence of GaN material in experiment did not result from Mn dopant.With the increase of Mn doping,the emission intensity of yellow or blue band increases to different extent and the band-to-band emission band shows red shift from peak at 3.34 to 3.24 eV.  相似文献   

9.
In this work, the time‐dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen‐bonded intramolecular charge‐transfer excited state of 2‐(4′‐N,N‐dimethylaminophenyl)imidazo[4,5‐b]pyridine (DMAPIP) in methanol (MeOH) solvent. All the geometric conformations of the ground state and locally excited (LE) state and the twisted intramolecular charge‐transfer (TICT) state for isolated DMAPIP and its hydrogen‐bonded complexes have been optimized. At the same time, the absorption and fluorescence spectra of DMAPIP and the hydrogen‐bonded complexes in different electronic states are also calculated. We theoretically demonstrated for the first time that the intermolecular hydrogen bond formed between DMAPIP and MeOH can induce the formation of the TICT state for DMAPIP in MeOH solvent. Therefore, the two components at 414 and 506 nm observed in the fluorescence spectra of DMAPIP in MeOH solvent were reassigned in this work. The fluorescence peak at 414 nm is confirmed to be the LE state. Furthermore, the red‐shifted shoulder at 506 nm should be originated from the hydrogen‐bonded TICT excited state. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.
The self‐assembly of 4′‐hydroxy‐biphenyl‐4‐carboxylic acid (H2hbc), 4, 4′‐bipyridine (4, 4′‐bpy) with a cobalt salt under hydrothermal conditions yielded a novel dinuclear cobalt(II) coordination polymer, {[Co(Hhbc)2(4, 4′‐bpy)] · H2O}n ( 1 ), where the coordinating polymeric chains are connected together through hydrogen bonding into a 3D framework of the primitive cubic ( pcu ) topology. Two pcu frameworks are interweaved into a 3D twofold Class Ia interpenetrating array.  相似文献   

11.
The question whether the emitter of yellow‐green firefly bioluminescence is the enol or keto‐constrained form of oxyluciferin (OxyLH2) still has no definitive answer from experiment or theory. In this study, Arg220, His247, adenosine monophosphate (AMP), Water324, Phe249, Gly343, and Ser349, which make the dominant contributions to color tuning of the fluorescence, are selected to simulate the luciferase (Luc) environment and thus elucidate the origin of firefly bioluminescence. Their respective and compositive effects on OxyLH2 are considered and the electronic absorption and emission spectra are investigated with B3LYP, B3PW91, and PBE1KCIS methods. Comparing the respective effects in the gas and aqueous phases revealed that the emission transition is prohibited in the gas phase but allowed in the aqueous phase. For the compositive effects, the optimized geometry shows that OxyLH2 exists in the keto(?1) form when Arg220, His247, AMP, Water324, Phe249, Gly343, and Ser349 are all included in the model. Furthermore, the emission maximum wavelength of keto(?1)+Arg+His+AMP+H2O+Phe+Gly+Ser is close to the experimental value (560 nm). We conclude that the keto(?1) form of OxyLH2 is a possible emitter which can produce yellow‐green bioluminescence because of the compositive effects of Arg220, His247, AMP, Water324, Phe249, Gly343, and Ser349 in the luciferase environment. Moreover, AMP may be involved in enolization of the keto(?1) form of OxyLH2. Water324 is indispensable with respect to the environmental factors around luciferin (LH2).  相似文献   

12.
Is the resonance‐based anionic keto form of oxyluciferin the chemical origin of multicolor bioluminescence? Can it modulate green into red luminescence? There is as yet no definitive answer from experiment or theory. The resonance‐based anionic keto forms of oxyluciferin have been proposed as a cause of multicolor bioluminescence in the firefly. We model the possible structures by adding sodium or ammonium cations and investigating the ground‐ and excited‐state geometries as well as the electronic absorption and emission spectra. A role for the resonance structures is obvious in the gas phase. The absorption and emission spectra of the two structures are quite different—one in the blue and another in the red. The differences in the spectra of the models are small in aqueous solution, with all the absorption and emission spectra in the yellow–green region. The resonance‐based anionic keto form of oxyluciferin may be one origin of the red‐shifted luminescence but is not the exclusive explanation for the variation from green (≈530 nm) to red (≈635 nm). We study the geometries, absorption, and emission spectra of the possible protonated compounds of keto(?1) in the excited states. A new emitter keto(?1)′‐H is considered.  相似文献   

13.
The intermolecular hydrogen‐bonds between proflavine cation (PC) and water molecules are investigated by density functional theory (DFT) and time‐dependent density functional theory (TDDFT) methods. The ground‐state geometry optimizations, electronic excitation energies and corresponding oscillation strengths of the low‐lying electronically excited states for the isolated proflavine cation, the hydrogen‐bonded PC–H2O dimer and PC–(H2O)2 trimer are calculated. Intermolecular hydrogen bonds at the central site of proflavine molecule are found to be stronger than the peripheral site. The hydrogen bond N–H???O for the hydrogen‐bonded dimer are indicated to be weakened in the excited states, since the excitation energy is increased slightly comparing to the monomer. Hydrogen bonds of PC–(H2O)2 trimer with the same type as the dimer are strengthened in the excited state, which is demonstrated by the decrease of the excited energies. Thus, hydrogen bond strengthening and weakening are observed to reveal site dependent feature in proflavine molecule. Furthermore, the hydrogen bond at central site induces the blue‐shift of the absorption spectrum, while the ones at peripheral site induce red‐shift. Hydrogen bonds with the same type at peripheral and central sites of proflavine molecule provide different effects on the photochemical and photophysical properties of proflavine.  相似文献   

14.
The intermolecular hydrogen bonds of mono‐ and dihydrated complexes of 7‐(3′‐Pyridyl)indole (7‐3′PI) have been investigated using the time‐dependent density functional theory (TD‐DFT) method. The electrostatic potential analysis of monomer 7‐3′PI and 7‐(3′‐Pyridyl)indole‐water (7‐3′PI‐W) indicates that an intermolecular hydrogen bond between two waters can be formed for 7‐(3′‐Pyridyl)indole‐2water (7‐3′PI‐2W) complex. The calculated bond lengths of the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W in the S1 state (the first excited singlet state) are all shortened compared to the ground state. By the analysis of bond length, charge population and infrared spectra, it is demonstrated that the intermolecular hydrogen bonds of 7‐3′PI‐W and 7‐3′PI‐2W are all strengthened upon electronic excitation to the S1 state. Moreover, the fluorescence of 7‐3′PI‐W and 7‐3′PI‐2W are all red‐shifted to larger wavelength compared to monomer 7‐3′PI. The red‐shift of fluorescence peak of 7‐3′PI‐W and 7‐3′PI‐2W should be attributed to the change of hydrogen bond interaction before and after photoexcitation. Therefore, it can be concluded that the intermolecular hydrogen bonding strengthening in the excited S1 state induces the fluorescence weakening of 7‐3′PI.  相似文献   

15.
李权  蔡静  陈俊蓉  赵可清 《中国化学》2008,26(2):255-259
使用密度泛函理论B3LYP方法和6-311++G**基函数对4-羟甲基吡啶与水形成的1:1和1:2(摩尔比)氢键复合物进行了理论计算研究,分别得到稳定的4-羟甲基吡啶-H2O和4-羟甲基吡啶-(H2O)2氢键复合物3个和8个。经基组重叠误差和零点振动能校正后,最稳定的1:1和1:2氢键复合物的相互作用能分别为-20.536和-44.246 kJ/mol。振动分析显示O-H···N(O)氢键的形成使复合物中O-H键对称伸缩振动频率红移(减小)。自然键轨道分析表明,4-羟甲基吡啶与水形成最稳定的1:1和1:2氢键复合物时,分子间电荷转移分别为0.02642 e 和0.03813 e 。含时密度泛函理论TD-B3LYP/ 6-311++G**计算显示,相对于4-羟甲基吡啶单体分子,氢键H-OH···N和H-OH···OH的形成分别使最大吸收光谱波长兰移8~16纳米和红移4~11纳米。  相似文献   

16.
The time‐dependent density functional theory (TDDFT) method has been carried out to investigate the excited‐state hydrogen‐bonding dynamics of 4‐aminophthalimide (4AP) in hydrogen‐donating water solvent. The infrared spectra of the hydrogen‐bonded solute?solvent complexes in electronically excited state have been calculated using the TDDFT method. We have demonstrated that the intermolecular hydrogen bond C? O···H? O and N? H···O? H in the hydrogen‐bonded 4AP?(H2O)2 trimer are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen‐bonding groups in different electronic states. The hydrogen bonds strengthening in the electronically excited state are confirmed because the calculated stretching vibrational modes of the hydrogen bonding C?O, amino N? H, and H? O groups are markedly red‐shifted upon photoexcitation. The calculated results are consistent with the mechanism of the hydrogen bond strengthening in the electronically excited state, while contrast with mechanism of hydrogen bond cleavage. Furthermore, we believe that the transient hydrogen bond strengthening behavior in electroniclly excited state of chromophores in hydrogen‐donating solvents exists in many other systems in solution. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

17.
Action spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas‐phase absorption properties with quantum‐chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest—such as xanthene analogues. We, therefore, face their nano‐ and picosecond laser‐induced photofragmentation with excited‐state computations by using the CC2 method and time‐dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree–Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher‐lying excited states conforms to intense excited‐to‐excited state transitions calculated with CC2. The CC2 method is thus suitable for the comparison with photofragmentation in xanthene analogues.  相似文献   

18.
获取了覆盖N-甲基吡咯-2-甲醛(NMPCA)A-带和B-带电子吸收共7个激发波长的共振拉曼光谱,并结合含时密度泛函理论(TD-DFT)方法研究了的A-带和B-带电子激发和Franck-Condon区域结构动力学.TD-B3LYP/6-311++G(d,p)计算表明:A-带和B-带电子吸收的跃迁主体为π→π*.共振拉曼光谱可以指认为,11-13振动模式(A-带激发)或者7-11振动模式(B-带激发)的基频、倍频和组合频,其中C=O伸缩振动(ν7)、环的变形振动+N1-C6伸缩振动(ν17)、环的变形振动(ν21)和C6-N1-C2/C2-C3-C4不对称伸缩振动(ν14)占据了绝大部分.这表明NMPCA的Sπ激发态结构动力学主要沿C=O伸缩振动、环的变形振动和环上N1-C6伸缩振动等反应坐标展开.在同一溶剂的共振拉曼光谱中随激发波长由长变短,ν7与ν14的强度比呈现出由强变弱再变强的现象,这种变化规律被认为与Franck-Condon区域Sn/Sπ态混合或势能面交叉有关.溶剂对Sn/Sπ态混合或势能面交叉具有调控作用.  相似文献   

19.
Intramolecular hydrogen‐bonding (H‐bonding) is commonly regarded as a major determinant of the conformation of (bio)molecules. However, in an aqueous environment, solvent‐exposed H‐bonds are likely to represent only a marginal (possibly adverse) conformational driving as well as steering force. For example, the hydroxymethyl rotamers of glucose and galactose permitting the formation of an intramolecular H‐bond with the adjacent hydroxyl group are not favored in water but, in the opposite, least populated. This is because the solvent‐exposed H‐bond is dielectrically screened as well as subject to intense H‐bonding competition by the water molecules. In the present study, the effect of a decrease in the solvent polarity on this rotameric equilibrium is probed using molecular dynamics simulation. This is done by considering six physical solvents (H2O, DMSO , MeOH , CHC l3, CC l4, and vacuum), along with 19 artificial water‐like solvent models for which the dielectric permittivity and H‐bonding capacity can be modulated independently via a scaling of the O–H distance and of the atomic partial charges. In the high polarity solvents, the intramolecular H‐bond is observed, but arises as an opportunistic consequence of the proximity of the H‐bonding partners in a given rotameric state. Only when the polarity of the solvent is decreased does the intramolecular H‐bond start to induce a conformational pressure on the rotameric equilibrium. The artificial solvent series also reveals that the effects of the solvent permittivity and of its H‐bonding capacity mutually enhance each other, with a slightly larger influence of the permittivity. The hydroxymethyl conformation in hexopyranoses appears to be particularly sensitive to solvent‐polarity effects because the H‐bond involving the hydroxymethyl group is only one out of up to five H‐bonds capable of forming a network around the ring.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号