首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A source of quantum correlated photon pairs in the 155Onto telecom band obtained by a pumping 11 m photonic crystal fiber with lOps pulse trains is experimentally demonstrated. We investigate how the birefringence of the fiber influences the purity of the photon pairs. We also present the frequency correlation of the signal and idler photon pairs. The experimental results are useful for developing a compact source of photon pairs well suited for quantum communication.  相似文献   

2.
We experimentally prepare the non-classical correlated photon pairs at the wavelengths of 780 and 776 mn via the cascade transition of 5S1/2 5P3/2-5D5/2 in a hot SSRb atomic ensemble. By measuring the function of cross-correlation and auto-correlation of photons, a violation of Cauehy Schwarz inequality by a factor of 283 is obtained, which clearly indicates a strong non-classicM correlation between the generated photons. We also find that noise photons scattered from pump lasers have a strong effect on the Cauchy-Schwarz inequality factor by changing the intensity of the pump laser, the experimental results are consistent with the theoretical predictions.  相似文献   

3.
Counter propagated write and read lasers can be used to generate non-classical correlated photon pairs in an atomic ensemble. We experimentally investigate how the detuning of the write laser affects the non-classical correlation function between the Stokes photon and the anti-Stokes photon, which are generated via a spontaneous four-wave mixing process using an off-axis configuration in a cold 85 Rb atomic ensemble. The change of the time-resolved second-order correlated function between the Stokes and anti-Stokes photons is presented. The experimental result suggests that a suitable choice of detuning should be considered in such an experiment.  相似文献   

4.
We report the experimentally realization of entanglement swapping and quantum correlation transferring for continuous variables. The initial entangled states are generated from two non-degenerate optical parametric amplifiers (OPA) operating at de-amplification pumped. Two beams from each OPAs are entangled through implementing the directly measurement of Bell state between other two beams. The quantum correlation degrees of 1.23 and 1. 12 dB below the shot noise limit for the amplitude and phase quadratures resulting from the entanglement swapping are measured straightly. The quantum correlation transferring is experimentally demonstrated with two quantum correlated twin beams. The initial correlated twin beams are generated from two separated non- degenerate OPO pumped by independent laser. The intensity quantum correlation degree of 1dB below SNL from the transferring is measured.  相似文献   

5.
It has been predicted that a driven three-level V atom can emit strongly correlated fluorescence photons in the presence of quantum interference. Here we examine the effects of quantum interference on the intensity correlation of fluorescence photons emitted from a driven three-level A atom. Unexpectedly, strong correlation occurs without quantum interference. The quantum interference tends to reduce the correlation function to a normal level. The essential difference between these two cases is traced to the different effects of quantum interference on coherent population trapping (OPT). For the V atom, quantum interference and coherent excitation combine to lead to OPT. For the A atom, however, the quantum interference tends to spoil OPT while the coherent excitation induces the effect.  相似文献   

6.
In this paper, we have analysed in detail the quantum interference of the degenerate narrowband two-photon state by using a Mach-Zehnder interferometer, in which an electromagnetically induced transparency (EIT) medium is placed in one of two interfering beams. Our results clearly show that it is possible to coherently keep the quantum state at a single photon level in the EIT process, especially when the transparent window of the EIT medium is much larger than the bandwidth of the single photon. This shows that the EIT medium is possibly a kind of memory or repeater for the narrowband photons in the areas of quantum communication and quantum computer. This kind of experiment is feasible within the current technology.  相似文献   

7.
We report experimental generation of non-classically correlated photon pairs from collective emission in a room temperature atomic vapor cell.The nonclassical feature of the emission is demonstrated by observing a violation of the Cauchy-Schwarz inequality.Each pair of correlated photons are separated by a controllable time delay up to 2 microseconds.This experiment demonstrates an important step towards the realization of the Duan-Lukin-Cirac-Zoller scheme for scalable long-distance quantum communication.  相似文献   

8.
A Random Number Generator Based on Quantum Entangled Photon Pairs   总被引:1,自引:0,他引:1       下载免费PDF全文
A new scheme for a random number generator based on quantum entangled photon pairs is demonstrated.Signal photons produced by optical parametric down-conversion are detected at two single-photon detectors after transmission or reflection at a 50/50% beamsplitter, to form a truly random binary sequence. Their arrival is signalled by their twin idler photons, so that a cw laser source may be used instead of attenuated laser pulses.Coincidence measurement is employed to obtain the bit sequences, which are shown to fully satisfy the standard tests for randomness.  相似文献   

9.
Single photons and photon pairs are typically generated by spontaneous parametric down conversion or quantum dots;however,spontaneous four-wave mixing(SFWM)in silicon microring resonators[1]is also an appealing source of entangled photons,offering a strong cavity-enhanced nonlinear interactions while maintaining features,such as compact,simple to fabricate,and allowing for thermal tuning.However,silicon ring-resonators usually suffer from a trade-off between providing a high pair generation rate(PGR)and high extraction efficiency.To achieve high PGR,devices are generally operated with the signal and idler photons in the undercoupling regime and pump photons at the critical coupling point,while high extraction rates require the converted photons to be overcoupled.Therefore,the optimal conditions for achieving maximal output photon pair flux are critical coupling for the pump photons and overcoupling for the converted photons[2,3].  相似文献   

10.
We present our lab cryocooler-based superconducting nanowire single photon detection (SNSPD) system. The dark count rate and system quantum efficiency are investigated at the bath temperature of 3.1 K with a 300-inK temperature fluctuation. The polarization sensitivity of the SNSPD is also measured, and the system counting rate and the timing jitter are discussed.  相似文献   

11.
杨宇光  温巧燕  朱甫臣 《中国物理》2007,16(7):1838-1842
In this paper an efficient quantum secure direct communication (QSDC) scheme with authentication is presented, which is based on quantum entanglement and polarized single photons. The present protocol uses Einstein--Podolsky--Rosen (EPR) pairs and polarized single photons in batches. A particle of the EPR pairs is retained in the sender's station, and the other is transmitted forth and back between the sender and the receiver, similar to the `ping--pong' QSDC protocol. According to the shared information beforehand, these two kinds of quantum states are mixed and then transmitted via a quantum channel. The EPR pairs are used to transmit secret messages and the polarized single photons used for authentication and eavesdropping check. Consequently, because of the dual contributions of the polarized single photons, no classical information is needed. The intrinsic efficiency and total efficiency are both 1 in this scheme as almost all of the instances are useful and each EPR pair can be used to carry two bits of information.  相似文献   

12.
Linear optical quantum Fredkin gate can be applied to quantum computing and quantum multi-user communication networks. In the existing linear optical scheme, two single photon detectors (SPDs) are used to herald the success of the quantum Fredkin gate while they have no photon count. But analysis results show that for non-perfect SPD, the lower the detector efficiency, the higher the heralded success rate by this scheme is. We propose an improved linear optical quantum Fredkin gate by designing a new heralding scheme with an auxiliary qubit and only one SPD, in which the higher the detection efficiency of the heralding detector, the higher the success rate of the gate is. The new heralding scheme can also work efficiently under a non-ideal single photon source. Based on this quantum Fredkin gate, large-scale quantum switching networks can be built. As an example, a quantum Bene~ network is shown in which only one SPD is used.  相似文献   

13.
Bell's theorem argues the existence of quantum nonlocality which goes basically against the hidden variable theory(HVT). Many experiments have been done via testing the violations of Bell's inequalities to statistically verify the Bell's theorem. Alternatively,by testing the Hardy's ladder proofs we experimentally demonstrate the deterministic violation of HVT and thus confirm the quantum nonlocality. Our tests are implemented with non-maximal entangled photon pairs generated by spontaneous parametric down conversions(SPDCs). We show that the degree freedom of photon entanglement could be significantly enhanced by using interference filters. As a consequence, the Hardy's ladder proofs could be tested and Bell's theorem is verified robustly. The probability of violating the locality reach to 41.9%, which is close to the expectably ideal value 46.4% for the photon pairs with degree of entanglement ε = 0.93. The higher violating probability is possible by further optimizing the experimental parameters.  相似文献   

14.
周鹏  李淳飞  廖常俊  魏正军  袁书琼 《中国物理 B》2011,20(2):28502-028502
A rigorous theoretical model for In 0.53 Ga 0.47 As/InP single photon avalanche diode is utilized to investigate the dependences of single photon quantum efficiency and dark count probability on structure and operation condition.In the model,low field impact ionizations in charge and absorption layers are allowed,while avalanche breakdown can occur only in the multiplication layer.The origin of dark counts is discussed and the results indicate that the dominant mechanism that gives rise to dark counts depends on both device structure and operating condition.When the multiplication layer is thicker than a critical thickness or the temperature is higher than a critical value,generation-recombination in the absorption layer is the dominative mechanism;otherwise band-to-band tunneling in the multiplication layer dominates the dark counts.The thicknesses of charge and multiplication layers greatly affect the dark count and the peak single photon quantum efficiency and increasing the multiplication layer width may reduce the dark count probability and increase the peak single photon quantum efficiency.However,when the multiplication layer width exceeds 1 μm,the peak single photon quantum efficiency increases slowly and it is finally saturated at the quantum efficiency of the single photon avalanche diodes.  相似文献   

15.
We report on the single photon emission from single InAs/GaAs self-assembled Stranski-Krastanow quantum dots up to 80 K under pulsed and continuous wave excitations. At temperature 8OK, the second-order correlation function at zero time delay, g^(2)(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.  相似文献   

16.
Two-mode mazer injected with V-type three-level atoms   总被引:1,自引:0,他引:1       下载免费PDF全文
梁文青  张智明  谢绳武 《中国物理》2003,12(12):1399-1413
The properties of the two-mode mazer operating on V-type three-level atoms are studied. The effect of the oneatom pumping on the two modes of the cavity field in number-state is asymmetric, that is, the atom emits a photon into one mode with some probability and absorbs a photon from the other mode with some other probability. This effect makes the steady-state photon distribution and the steady-state photon statistics asymmetric for the two modes. The diagram of the probability currents for the photon distribution, given by the analysis of the master equation, reveals that there is no detailed balance solution for the master equation. The computations show that the photon statistics of one mode or both modes can be sub-Poissonian, that the two modes can have anticorrelation or correlation, that the photon statistics increases with the increase of thermal photons, and that the resonant position and strength of the photon statistics are influenced by the ratio of the two coupling strengths of the two modes. These properties are also discussed physically.  相似文献   

17.
We demonstrate the controllable generation of multi-photon Fock states in circuit quantum electrodynamics (circuit QED). The external bias flux regulated by a counter can effectively adjust the bias time on each superconducting flux qubit so that each flux qubit can pass in turn through the circuit cavity and thereby avoid the effect of decoherence. We further investigate the quantum correlation dynamics of coupling superconducting qubits in a Fock state. The results reveal that the lower the photon number of the light field in the number state, the stronger the interaction between qubits is, then the more beneficial to maintaining entanglement between qubits it will be.  相似文献   

18.
于莉媛  曹俊诚 《中国物理快报》2004,21(12):2504-2506
We have calculated the intraband photon absorption coefficients of hot two-dimensional electrons interacting with polar-optical phonon modes in quantum wells. The dependence of the photon absorption coefficients on the photon wavelength λ is obtained both by using the quantum mechanical theory and by the balance-equation theory. It is found that the photon absorption spectrum displays a local resonant maximum, corresponding to LO energy, and the absorption peak vanishes with increasing the electronic temperature.  相似文献   

19.
This study proposes the first high-capacity quantum secure direct communication(QSDC) with two-photon six-qubit hyperentangled Bell states in two longitudinal momentum and polarization degrees of freedom(DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits.Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication.The QSDC protocol has good applications in the future quantum communication because of all these features.  相似文献   

20.
We theoretically derive exact expressions for Mandel‘s Q parameter of the triggered single molecular source, which is inferred from the probabilities PRs (n) using the recorded of each photon detection event based on Hanbury Brown and Twiss detection. The real triggered source is recognized as an ideal single photon source with a Poissonian statistics background. How to decease the background and to increase the efficiency are discussed. It is established that the sub-Poissonian statistics formation can be determined by comparing the measured QRs of the real single triggered molecular with Qc of the Poissonian source containing the same mean photons. By this method, we also give an efficient way to measure signal-to-background ratios of triggered single photons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号