首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
We studied the selective growth behaviors of InP through narrow openings (<2 μm) by metal-organic chemical vapor deposition. The lateral overgrowth was observed to be significantly affected by both the opening width and orientation. It was found that the lateral overgrowth length reached the maximum at 60° off [0 1 1] direction. The lateral overgrowth also showed a ‘diffraction-like’ behavior, with the overgrowth length increasing with decreasing opening width. Based on these results, a novel InP/InGaAs heterojunction bipolar transistor (HBT) structure with extrinsic base laterally overgrown on SiO2 is proposed. The device behaviors of the laterally regrown-base HBT prototypes are demonstrated.  相似文献   

2.
The growth pressure and mask width dependent thickness enhancement factors of selective-area MOCVD growth were investigated in this article. A high enhancement of 5.8 was obtained at 130 mbar with the mask width of 70 μm. Mismatched InGaAsP (−0.5%) at the maskless region which could ensure the material at butt-joint region to be matched to InP was successively grown by controlling the composition and mismatch modulation in the selective-area growth. The upper optical confinement layer and the butt-coupled tapered thickness waveguide were regrown simultaneously in separated confined heterostructure 1.55 μm distributed feedback laser, which not only offered the separated optimization of the active region and the integrated spotsize converter, but also reduced the difficulty of the butt-joint selective regrowth. A narrow beam of 9° and 12° in the vertical and horizontal directions, a low threshold current of 6.5 mA was fabricated by using this technique.  相似文献   

3.
The quality of GaN epilayers grown by molecular beam epitaxy on substrates such as sapphire and silicon carbide has improved considerably over the past few years and in fact now produces AlGaN/GaN HEMT devices with characteristics among the best reported for any growth technique. However, only recently has the bulk defect density of MBE grown GaN achieved levels comparable to that obtained by MOVPE and with a comparable level of electrical performance. In this paper, we report the ammonia-MBE growth of GaN epilayers and HFET structures on (0 0 0 1)sapphire. The effect of growth temperature on the defect density of single GaN layers and the effect of an insulating carbon doped layer on the defect density of an overgrown channel layer in the HFET structures is reported. The quality of the epilayers has been studied using Hall effect and the defect density using TEM, SEM and wet etching. The growth of an insulating carbon-doped buffer layer followed by an undoped GaN channel layer results in a defect density in the channel layer of 2×108 cm−2. Mobilities close to 490 cm2/Vs at a carrier density of 8×1016 cm−3 for a 0.4 μm thick channel layer has been observed. Growth temperature is one of the most critical parameters for achieving this low defect density both in the bulk layers and the FET structures. Photo-chemical wet etching has been used to reveal the defect structure in these layers.  相似文献   

4.
We have been developing a zone growth method for an InxGa1−xAs single crystal with a uniform InAs composition, using an InGaAs source, InGaAs melt and InGaAs seed charged in a crucible. This time, we modified the zone growth method to increase the length of an InGaAs zone crystal. A gap created between the wall around the InGaAs source and the inner wall of the crucible effectively prevents the interruption in normal zone growth because it changes the directions of heat current in the source. In addition, we found that it is very important for single crystal growth that no rotation of the crucible takes place during zone growth, because the degree of mixing caused by melt convection is reduced. The zone growth region of the obtained InGaAs crystal is almost exclusively of single-crystal-type, and it is about 26 mm long, which is 1.5 times the region length of the zone single crystal reported previously. We believe that a longer growth period could have further increased the length of our zone crystal, because some of the source remained. The InAs composition (x) of the zone crystal is greater than 0.3, and the crystal diameter is 15 mm.  相似文献   

5.
Using digital-alloy InGaAlAs, 1.55 μm InGaAs/InGaAlAs multi-quantum wells were fabricated. It was found that the linewidth of 10 K-photoluminescence (PL) (5.7 meV) is narrower than that of conventional InGaAs/In(Ga)AlAs multi-quantum wells grown using present state-of-the-art growth methods. The narrower linewidth is attributed to the elongated effective-well-width and the increased 3 dimensional properties, due to carrier tunneling through the digital-alloy InGaAlAs barrier. The standard deviation of 300 K-PL peak wavelengths over the entire 2-in. wafer is 1.8 nm and the area ratio of the uniform PL peak intensity is approximately 64% of the entire wafer. This is the first report on this material system.  相似文献   

6.
Long-wavelength vertical cavity surface emitting lasers (VCSELs) are considered the best candidate for the future low-cost reliable light sources in fiber communications. However, the absence of high refractive index contrast in InP-lattice-matched materials impeded the development of 1.3–1.5 μm VCSELs. Although wafer fusions provided the alternative approaches to integrate the InP-based gain materials with the GaAs/AlAs materials for their inherent high refractive index contrast, the monolithic InP-based lattice-matched distributed Bragg reflectors (DBRs) are still highly attractive and desirable. In this report, we demonstrate InP/InGaAlAs DBRs with larger refractive index contrast than InP/InGaAsP and InAlAs/InGaAlAs DBRs. The switching between InP and InGaAlAs layers and growth rate control have been done by careful growth interruption technique and accurate in situ optical monitoring in low-pressure metal organic chemical vapor deposition. A 35 pairs 1.55 μm centered InP/InGaAlAs DBRs has the stopband of more than 100 nm and the highest reflectivity of more than 99%. A VCSEL structure incorporating 35 pairs InP/InGaAlAs DBR as the bottom mirror combined with a 2λ thick periodic gain cavity and 10 pairs SiO2/TiO2 top dielectric mirrors was fabricated. The VCSELs lased at 1.56 μm by optical pumping at room temperature with the threshold pumping power of 30 mW.  相似文献   

7.
The properties of self-assembled InAs quantum dots (QDs) grown by molecular beam epitaxy on GaAs substrates were investigated. The surface properties of samples were monitored by reflection high-energy electron diffraction to determine growth. Photoluminescence (PL) and transmission electron microscope (TEM) were then used to observe optical properties and the shapes of the InAs-QDs. Attempts were made to grow InAs-QDs using a variety of growth techniques, including insertion of the InGaAs strained-reducing layer (SRL) and the interruption of In flux during QD growth. The emission wavelength of InAs-QDs embedded in a pure GaAs matrix without interruption of In flux was about 1.21 μm and the aspect ratio was about 0.21. By the insertion InGaAs SRL and interruption of In flux, the emission wavelength of InAs-QDs was red shifted to 1.37 μm and the aspect ratio was 0.37. From the PL and TEM analysis, the properties of QDs were improved, particularly when interruption techniques were used.  相似文献   

8.
Nucleation and growth of wurtzite AlN layers on nominal and off-axis Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy is reported. The nucleation and the growth dynamics have been studied in situ by reflection high-energy electron diffraction. For the films grown on the nominal Si(0 0 1) surface, cross-sectional transmission electron microscopy and X-ray diffraction investigations revealed a two-domain film structure (AlN1 and AlN2) with an epitaxial orientation relationship of [0 0 0 1]AlN || [0 0 1]Si and AlN1 || AlN2 || [1 1 0]Si. The epitaxial growth of single crystalline wurtzite AlN thin films has been achieved on off-axis Si(0 0 1) substrates with an epitaxial orientation relationship of [0 0 0 1]AlN parallel to the surface normal and 0 1 1 0AlN || [1 1 0]Si.  相似文献   

9.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

10.
The strain, surface and interface energies of the SiGe/Si (SiGe grown on Si) heterostructure system with and without misfit dislocations were calculated for the Frank–van der Merwe (FM), Stranski–Krastanov (SK) and Volmer–Weber (VW) growth modes essentially based on the three kinds of fundamental and simple structures. The free energies for each growth mode were derived from these energies, and it was determined as a function of the composition and layer thickness of SiGe on Si. By comparison of the free energies, the phase diagrams of the FM, SK and VW growth modes for the SiGe/Si system were determined. The (1 1 1) and (1 0 0) reconstructed surfaces were selected for this calculation. From the phase diagrams, it was found for the growth of SiGe on Si that the layer-by-layer growth such as the FM mode was easy to be obtained when the Ge composition is small, and the island growth on a wetting layer such as the SK mode was easy to be obtained when the Ge composition is large. The VW mode is energetically stable in the Ge-rich compositional range, but it is difficult for the VW mode to appear in the actual growth of SiGe on Si because the VW region is right above the SK region. The regions of the SK and VW modes for the (1 1 1) heterostructure are larger than those for the (1 0 0) one because the strain energy of the (1 1 1) face is larger than that of the (1 0 0) face. The regions of the SK and VW modes for the heterostructure with misfit dislocations are narrower than those for the one without misfit dislocations because the strain energy is much released by misfit dislocations. The phase diagrams roughly explain the behavior of the FM and SK growth modes of SiGe on Si.  相似文献   

11.
Selective MOVPE growth of GaN microstructure on silicon substrates has been investigated using SiO2 mask having circular or stripe window. In case of (0 0 1)substrate, grooves with (1 1 1) facets at the sides were made by using the etching anisotropy of a KOH solution. On the (1 1 1) facets of patterned silicon substrate (or on the as opened window region of (1 1 1) substrate), growth of wurtzite GaN was performed, of which the c-axis is oriented along the 1 1 1 axis of silicon. The photoluminescence and X-ray diffraction analysis were performed to characterize the single crystal to reveal the effect of the growth conditions of the intermediated layer and the microstructure.  相似文献   

12.
We investigate the growth behavior and microstructure of Ge self-assembled islands of nanometer dimension on Si (0 0 1) substrate patterned with hexagonally ordered holes of 25 nm depth, 30 nm diameter, and 7×1010 cm−2 density. At 9 Å Ge coverage and 650 °C growth temperature, Ge islands preferentially nucleate inside the holes, starting at the bottom perimeter. Approximately 14% of the holes are filled by Ge islands. Moiré fringe analysis reveals partial strain relaxation of about 72% on average, which is not uniform even within a single island. Crystalline defects such as dislocation are observed from islands smaller than 30 nm. Increased Ge coverage to 70 Å forms larger aggregates of many interconnected islands with slightly increased filling factor of about 17% of the holes. Reducing the growth temperature to 280 °C results in much higher density of islands with a filling factor of about 80% and with some aggregates. The results described in this report represent a potential approach for fabricating semiconductor quantum dots via epitaxy with higher than 1010 cm−2 density.  相似文献   

13.
This paper investigates preparation of CaSeS thin films using hot-wall epitaxy. These films can be grown epitaxially on cleaved BaF2(1 1 1) at a substrate temperature of 873 K by tailoring the VI/II flux ratio vaporized from Ca and SeS resources. The optical absorption edge of these films thus tailored can be observed clearly, shifting toward higher photon energy with increasing S content. In particular, the energy band gap of CaSe0.66S0.34, capable of lattice-matching to InP was found to be 4.69 eV, producing considerably large band gap difference of 3.34 eV between the CaSe0.66S0.34 and InP.  相似文献   

14.
The influence of AlN nucleation layer (NL) growth conditions on the quality of GaN layer deposited on (0 0 0 1) sapphire by organometallic chemical vapor phase epitaxy (OMVPE) has been investigated by X-ray diffraction, atomic force microscopy and transmission electron microscopy. Growth pressure, temperature and time were varied in this study. Results indicate that there exists an optimal thickness of the NL is required for optimal growth. Both thin and thick NLs are not conducive to the growth of high-quality GaN layers. Arguments have been developed to rationalize these observations.  相似文献   

15.
Effects of the oxygen partial pressure on pulsed-laser deposition of MgO buffer layers on silicon substrates were investigated. The overall growth process was monitored in situ by reflection high-energy electron diffraction (RHEED) method. It was found that the crystallinity and surface morphology of the MgO films were strongly affected by oxygen partial pressure in the deposition chamber. The oxygen-pressure dependence could be explained in terms of interactions of oxygen with species in the plume-like plasma. The MgO film obtained at an optimal oxygen-pressure range of 1×10−2–1 Pa exhibited an atomic-smooth and defect-free surface (the root-mean-square roughness being as low as 0.82 nm). For the metal–insulator–metal (MIM) structure of Au/MgO (150 nm)/TiN prepared at the optimal growth conditions achieved a very low leak current density of 10−7 A cm−2 at an electric field of 8×105 V cm−1 and the permittivity (εr) of about 10.6, virtually the same as that of the bulk MgO single crystals.  相似文献   

16.
We developed a novel, simple procedure for achieving lateral confined epitaxy (LCE). This procedure enables the growth of uncracked GaN layers on a Si substrate, using a single, continuous metalorganic chemical vapor deposition (MOCVD) run. The epitaxial growth of GaN is confined to mesas, defined by etching into the Si substrate prior to the growth. The LCE-GaN layers exhibit improved morphological and optical properties compared to the plain GaN-on-Si layers grown in the same MOCVD system. By performing a set of LCE growth runs on mesas of varying lateral dimensions, we specified the crack-free range of GaN on Si as 14.0±0.3 μm.  相似文献   

17.
We developed an automatic feedback control system of the crystal–melt interface position to keep the temperature at the interface constant during growth, and demonstrate its successful application to grow Ge-rich SiGe bulk crystals with uniform composition. In this system, the position of the crystal–melt interface was automatically detected by analyzing the images captured using in situ monitoring system based on charge-coupled-devices camera, and the pulling rate of the crucible was corrected at every 1 min. The system was found to be effective to keep the crystal–melt interface position during growth even when the variation of the growth rate is quite large. Especially, the interface position was kept for 470 h during growth of Ge-rich SiGe bulk crystal when we started with a long growth melt of 80 mm. As a result, a 23 mm-long Si0.22Ge0.78 bulk crystal with uniform composition was obtained thanks to the constancy of the growth temperature during growth through the control of the interface position. Our technique opens a possibility to put multicomponent bulk crystal in a practical use.  相似文献   

18.
Highly resistive GaN : Be was obtained by means of synthesis of Ga+Be with atomic nitrogen under high nitrogen pressure. Activation energy of resistivity is about 1.5 eV. This material exhibits features very different from those observed in highly resistive bulk GaN : Mg. Up to 300 K strong yellow band dominates photoluminescence spectrum in resistive GaN : Be crystals. Positron annihilation studies point to the presence of gallium vacancies, VGa. In highly resistive GaN:Mg neither yellow band with considerable intensity, nor detectable concentration of VGa was found. We also discuss the puzzling findings in highly resistive bulk GaN : Be of morphological features typical for highly conducting bulk n-GaN material.  相似文献   

19.
We prepared InGaN layers on GaN/sapphire substrates using rf-MBE. Photoluminescence (PL) from these layers, grown at different temperatures TS, shows that there is a strong tendency of GaN to form a separate phase as TS is increased from 600°C to 650°C. Concomitant with the phase separation, the PL from the InGaN phase broadens, which indicates that indium composition in this phase becomes increasingly non-uniform. Indium compositions measured by Rutherford backscattering (RBS) are consistent with these results. We also observed an increase in PL intensity for InGaN layers grown at higher temperatures. In this paper, we also report on preparing a top-contact InGaN/GaN light emitting diode. The device was operated at 447 nm and had the emission line width of 37 nm with no observable impurity related features. The turn-on voltage was 3.0 V. The output power was 20 μW at 60 mA drive current.  相似文献   

20.
NaBi(WO4)2 (NBW) crystals have been grown for the first time by modified-Bridgman method. Influences of some factors on the crystal growth process are discussed. X-ray powder diffraction experiments show that the unit cell parameters of NBW crystal are a=b=0.5284 nm, c=1.1517 nm, and V=0.3215 nm3. The differential thermal analysis shows that the NBW crystal melts at 923°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号