首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dipalladium(I) complex Pd(2)Cl(2)(dmpm)(2) (1a) [dmpm = bis(dimethylphosphino)methane] is known to react with elemental sulfur (S(8)) to give the bridged-sulfide complex Pd(2)Cl(2)(μ-S)(dmpm)(2) (2a) but, in the presence of excess S(8), PdCl(2)[P,S-dmpm(S)] (4a) and dmpm(S)(2) are generated. Treatment of 1a with elemental selenium (Se(8)), however, gives only Pd(2)Cl(2)(μ-Se)(dmpm)(2) (3a). Complex 4a is best made by reaction of trans-PdCl(2)(PhCN)(2) with dmpm(S). Complex 2a reacts with MeI to yield initially Pd(2)I(2)(μ-S)(dmpm)(2) and MeCl, and then Pd(2)I(2)(μ-I)(2)(dmpm)(2) and Me(2)S, whereas alkylation of 2a with MeOTf generates the cationic, bridged-methanethiolato complex [Pd(2)Cl(2)(μ-SMe)(dmpm)(2)]OTf (5). Oxidation of 2a with m-CPBA forms a mixture of Pd(2)Cl(2)(μ-SO)(dmpm)(2) and Pd(2)Cl(2)(μ-SO(2))(dmpm)(2), whereas Pd(2)Br(2)(μ-S)(dmpm)(2) reacts selectively to give Pd(2)Br(2)(μ-SO)(dmpm)(2) (6b). Treatment of the Pd(2)X(2)(μ-S)(dmpm)(2) complexes with X(2) (X = halogen) removes the bridged-sulfide as S(8), with co-production of Pd(II)(dmpm)-halide species. X-ray structures of 3a, 5 and 6b are presented. Reactions of dmpm with S(8) and Se(8) are clarified. Differences in the chemistry of the dmpm systems with that of the corresponding dppm systems [dppm = bis(diphenylphosphino)methane] are discussed.  相似文献   

2.
Two new mixed metal cluster complexes PtRu3(CO)10(PPh3)(3-S)2,3 14% yield and PtRu3(CO)9(PPh3)2(3-S)2,4 23% yield were obtained from the reaction of Ru3(CO)9(3-S)2,1 with Pt(PPh3)2(C2H4) at 0°C. The cluster of4 consists of a spiked triangle of four metal atoms with two triply bridging sulfido ligands. The reaction of Ru4(CO)11(4-S)2,2 with Pt(PPh3)2(C2H4) yielded the expanded mixed-metal cluster complex PtRu4(CO)12(PPh3)(4-S)2,5 in 12% yield. The structure of the cluster5 can be described as a pentagonal bipyramid of five metal atoms and two sulfido ligands with one metal-metal bond missing. Compounds4 and5 were characterized by a single-crystal X-ray diffraction analyses.  相似文献   

3.
Tri-2-disulfido-3-thiotris(diethyldithiocarbamato)-S,S'-triangle-trimolybdenum bromide [Mo3(3-S)(2-S2)3(Et2NCS2)3 +Br- was obtained and characterized.  相似文献   

4.
<正> C20H40Mo3NO8P3S10, Mr=1123.93, triclinic, P1,a=12.972(3), b=13.763(2), c= 14.515(7)A,α=66.22(3),β=101.72(3),γ=118.90(1)° , V= 2076(2) A3, Z=2,Dc=1.798 g.cm-3, MoKa radiation, final R= 0.040 and Rw=0.056 for 5645 observed reflections. The molecule contains three Mo atoms arranged in a triangle with one capping-S atom, three (μ-S) atoms, one (μ-EtCOO) ligand, one chelate ligand dtp on each Mo atom, and one terminal Py on atom Mo(1). The coordination of Mo atoms is of distorted octahedron.  相似文献   

5.
Reactions of [Pt2(μ-S)2(PPh3)4] with zinc acetate and an ancillary chelating ligand L (HL = 8-hydroxyquinoline, 8-tosylaminoquinoline or maltol) with added trimethylamine in methanol give new cationic platinum–zinc sulfide aggregates [Pt2(μ-S)2(PPh3)4ZnL]+, isolated as their BF4? salts. The complexes were characterized by NMR spectroscopy, ESI mass spectrometry, microelemental analysis, and an X-ray structure determination of the tosylamidoquinoline derivative [Pt2(μ-S)2(PPh3)4Zn(TAQ)]BF4, which showed a distorted tetrahedral coordination geometry at zinc. Additional examples, containing picolinate, dithiocarbamate, or dithiophosphinate ligands were also synthesized and partly characterized in order to demonstrate a wider range of available derivatives.  相似文献   

6.
The reactivity of the metalloligand [Pt2(μ-S)2(PPh3)4] with the boron-functionalized alkylating agents BrCH2(C6H4)B(OR)2 (R = H or C(CH3)2) was investigated by electrospray ionization mass spectrometry (ESI-MS) in real time using pressurized sample infusion (PSI). The macroscopic reaction of [Pt2(μ-S)2(PPh3)4] with one mole equivalent of alkylating agents BrCH2(C6H4)B{OC(CH3)2}2 and BrCH2(C6H4)B(OH)2 gave the dinuclear monocationic μ-sulfide thiolate complexes [Pt2(μ-S){μ-SCH2(C6H4)B{OC(CH3)2}2}(PPh3)4]+ and [Pt2(μ-S){μ-S+CH2(C6H4)B(OH)(O?)}(PPh3)4]. The products were isolated as the [PF6]? salt and zwitterion, respectively, and fully characterized by ESI-MS, IR, 1H and 31P NMR spectroscopy, and single-crystal X-ray structure determinations.  相似文献   

7.
《Mendeleev Communications》2023,33(1):133-134
The presence of Sn4+ dopant ions on the surfaces of titania crystallites results in a nearly fourfold increase in the rate constant of a white-light photocatalytic bleaching reaction of methyl orange. Thus, the positive effect of a SnII electronic lone pair, which was theoretically predicted in 2013 by Iwaszuk and Nolan for a SnO-nanocluster modified anatase model, can be experimentally revealed using catalyst powders containing surface-located oxidized Sn4+ species.  相似文献   

8.
The binuclear tin(IV) complex with N-(2-hydroxyethyl)ethylenediamine-N,N′,N′-triacetic acid (H4Hedtra) is synthesized. The compound is characterized by elemental analysis, thermogravimetry, and IR spectroscopy. An X-ray diffraction analysis of complex Sn(μ-Hedtra)(μ-OH)SnCl3(H2O)] · 3H2O (I) is carried out. Structure I is formed by the binuclear complexes and molecules of water of crystallization. One of the tin atoms coordinates six “active” sites Hedtra4? (the alcohol branch is deprotonated and forms a bridge between two tin atoms) and the bridging hydroxo group. The polyhedron is a pentagonal bipyramid. The octahedral environment of the second tin atom is formed by two bridging oxygen atoms, three chlorine atoms (fac isomer), and a coordination water molecule.  相似文献   

9.
Reaction of dinuclear platinum(II) sulfido complex [Pt2(μ-S)2(PPh3)4] with 1,3-propanesultone gives the novel zwitterionic monoalkylated thiolate complex [Pt2(μ-S){μ-S(CH2)3SO3}·(PPh3)4], which was characterized by NMR spectroscopy, electrospray ionisation mass spectrometry, and a single crystal X-ray structure determination. Crystals are monoclinic, space group P2(1)/c with unit cell dimensions a = 16.8957(3) Å, b = 15.5031(3) Å, c = 28.0121(5) Å, β = 99.780(1)°, for Z = 4.  相似文献   

10.
Single-crystal X-ray diffraction studies of Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82)·Ni(II)(OEP)·2C(6)H(6) reveal that both contain fully ordered fullerene cages. The crystallographic data for Sc(2)(μ(2)-S)@C(s)(6)-C(82)·Ni(II)(OEP)·2C(6)H(6) show two remarkable features: the presence of two slightly different cage sites and a fully ordered molecule Sc(2)(μ(2)-S)@C(s)(6)-C(82) in one of these sites. The Sc-S-Sc angles in Sc(2)(μ(2)-S)@C(s)(6)-C(82) (113.84(3)°) and Sc(2)(μ(2)-S)@C(3v)(8)-C(82) differ (97.34(13)°). This is the first case where the nature and structure of the fullerene cage isomer exerts a demonstrable effect on the geometry of the cluster contained within. Computational studies have shown that, among the nine isomers that follow the isolated pentagon rule for C(82), the cage stability changes markedly between 0 and 250 K, but the C(s)(6)-C(82) cage is preferred at temperatures ≥250 °C when using the energies obtained with the free encapsulated model (FEM). However, the C(3v)(8)-C(82) cage is preferred at temperatures ≥250 °C using the energies obtained by rigid rotor-harmonic oscillator (RRHO) approximation. These results corroborate the fact that both cages are observed and likely to trap the Sc(2)(μ(2)-S) cluster, whereas earlier FEM and RRHO calculations predicted only the C(s)(6)-C(82) cage is likely to trap the Sc(2)(μ(2)-O) cluster. We also compare the recently published electrochemistry of the sulfide-containing Sc(2)(μ(2)-S)@C(s)(6)-C(82) to that of corresponding oxide-containing Sc(2)(μ(2)-O)@C(s)(6)-C(82).  相似文献   

11.
Co2(CO)8与4个二硫代双(烷基硫代甲酰胺)类前配体[R2NC(S)S]2反应,得4个含烷基硫代甲酰胺基的三核钴羰基硫簇合物.通过元素分析、IR、1H NMR和MS等方法表征了它们的结构,用X射线衍射法测定了其中一个簇合物Co3(CO)7(μ3-S)[μ,η2-SCN(i-Pr)2](Ⅲ)的晶体结构.晶体属单斜晶系,P21/n空间群,晶胞参数a=1.145 2(2)nm,b=1.502 8(3)nm,c=1.2144(2)nm,a=90°,β=92.15(3)°,γ=90°,V=2.088 5(7)nm3,Z=4,F(000)=1 096,Dc=1.747 mg·m-3,GOF(F2)=0.835,μ=2.588 nm-1.最终因子R[I>2σ(I)]=0.040 7,Rw=0.062 4.  相似文献   

12.
The new clusters Fe2 M(CO)103-S)(µ3-Te), I (M=W) and 2 (M=Mo) have been isolated from the room temperature reaction of Fe2(CO)6(µ-STe) andM(CO)5(THF) (M=W, Mo), respectively. Compounds1 and2 have been characterized by IR, 125 Te NMR spectroscopy, and elemental analysis. The structure of compound1 has been established by X-ray crystallography. It belongs to the triclinic space groupP witha=6.844(2) Å,b=9.397(2) Å,c=13.681(10) Å, =81.64(2)°,=81360r,=812(2)°,V=861.2(3) Å3,Z=2,D e =2.835 g cm–3. Full-matrix least-squares refinement of1 converged to R=0.043, andR w .=0.115. The structure consists of a Fe2 WSTe square pyramid and the W atom occupies the apical site of the square pyramid.  相似文献   

13.
The reaction between Ru5(5-C2PPh2)(-PPh2)(CO)13 and Au(C2Ph)(PPh3) afforded AuRu5(5-C2PPh2)(-C2Ph)(-PPh2)(CO)13 (PPh3), in which the Ru5 cluster has a scorpion geometry; the Au(PPh3) group bridges one of the Ru-Ru bonds of the Ru3 triangle, while the C2Ph group bridges one of the tail Ru-Ru vectors.For Part 84, see Ref. 1.  相似文献   

14.
(μ3-S)Fe2CoCu(PPh3)2(CO)8催化苯乙烯环丙烷化反应研究   总被引:1,自引:0,他引:1  
陈致  张玉华 《分子催化》2000,14(4):307-310
以异核金属原子簇合物为催化剂的配位催化反应, 已在均相催化反应中得到应用. 簇合物中不同金属间的协同作用使其在催化领域展现出广阔的应用前景[1]. 然而,催化反应中簇合物是否以完整的骨架起催化作用,一直是人们关注的焦点. 在金属原子簇作催化剂前体的均相催化反应中,迄今只在少数的例子中有确凿的证据表明原子簇整体分子起催化作用[2]. 一般认为,在配位饱和的金属簇合物的催化反应中,簇合物稳定性越好,催化活性越差;而活性好的催化剂前体,簇合物骨架常解体.  相似文献   

15.
The reaction of [Os3(CO)10(μ-dppm)] (1) with tBu2PH in refluxing diglyme results in the electron-deficient metal cluster complex [Os3(CO)5(μ3-H)(μ-PtBu2)2(μ-dppm)] (2) (dppm = Ph2PCH2PPh2) in good yields. The molecular structure of 2 has been established by a single crystal X-ray structure analysis. In contrast to the known homologue [Ru3(μ-CO)(CO)4(μ3-H)(μ-H)(μ-PtBu2)2(μ-dppm)] (3), no bridging carbonyl ligand was found in 2. The electronically unsaturated cluster 2 does not react with carbon monoxide under elevated pressure, therefore 2 seems to be coordinatively saturated by reason of the high steric demands of the phosphido ligands.  相似文献   

16.
17.
The mechanoactivated solid-state reaction of [Et4N]2[Mo3S7Br6] with Na(Et2NCS2) in a vacuum vibration ball mill yields the [Mo3S7(Et2NCS2)3]+[Et2NCS2]complex. The product was studied by IR and Raman spectroscopy and differential thermal analysis.  相似文献   

18.
Addition of the ·P(O)(OPri)2, Me·, Et·, ·But, and Cl3C· radicals to the (ν2-C60)Os(CO)-(PPh3)2(CNBut) complex (1) was studied by ESR spectroscopy. The spectral parameters of the spin-adducts of these radicals with complex 1 were determined. The predominant direction of the attack by the ·P(O)(OPri)2, ·But, and Cl3C· radicals are the cis-1 and cis-2 bonds of the fullerene molecule. The stability of the spin-adducts depends substantially on the nature of the added radical. The addition rate constants of the ·P(O)(OPri)2, ·But, and Cl3C· radicals to complex 1 and the dimerization rate constants for these spin-adducts were determined. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 301–307, February, 2008.  相似文献   

19.
The thermal reaction of Ru3(CO)9(PPh3)3 with precursors (HL) of binucleating anionic ligands affords the ruthenium(I) dimers Ru2(μ-L)2(CO)4(PPh3)2 (3), t-butylmercaptane (4); H2L2 = 1,8-diaminonaphthalenene (5)]. The crystal structure of complex 5 shows that each nitrogen of the 1,8-diiminonaphthalene ligand bridges the two ruthenium atoms, leading to a vary distorted, octahedral arrangement of the ligands and a very short RuRu distance, 2.5788(3) Å.  相似文献   

20.
Deprotonation of Ir4(CO)11PPh2H (1) in the presence of [AuPPh3][PF6] yields the novel species Ir4(CO)11(PPh2AuPPh3) (2), which possesses a tetrahedral framework bearing a terminally bound PPh2AuPPh3 ligand. When heated in toluene, 2 is converted into the phosphido species Ir4(CO)10(μ-PPh2)(μ-AuPPh3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号