首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hong Li 《中国物理 B》2022,31(12):127301-127301
The spin-dependent Andreev reflection is investigated theoretically by analyzing the electronic transport in a thin-film topological insulator (TI) ferromagnet/superconductor (FM/SC) junction. The tunneling conductance and shot noise are calculated based on the Dirac-Bogoliubov-de Gennes equation and Blonder-Tinkham-Klapwijk theory. It is found that the magnetic gap in ferromagnet can enhance the Andreev retro-reflection but suppress the specular Andreev reflection. The gate potential applied to the electrode on top of superconductor can enhance the two types of reflections. There is a transition between the two types of reflections at which both the tunneling conductance and differential shot noise become zero. These results provide a method to realize and detect experimentally the intra-band specular Andreev reflection in thin film TI-based FM/SC structures.  相似文献   

2.
Xingfei Zhou 《中国物理 B》2022,31(11):117403-117403
We investigate the Andreev reflection across a uniaxial strained graphene-based superconducting junction. Compared with pristine graphene-based superconducting junction, three opposite properties are found. Firstly, in the regime of the interband conversion of electron-hole, the Andreev retro-reflection happens. Secondly, in the regime of the intraband conversion of electron-hole, the specular Andreev reflection happens. Thirdly, the perfect Andreev reflection, electron-hole conversion with unit efficiency, happens at a nonzero incident angle of electron. These three exotic properties arise from the strain-induced anisotropic band structure of graphene, which breaks up the original relation between the direction of velocity of particle and the direction of the corresponding wavevector. Our finding gives an insight into the understanding of Andreev reflection and provides an alternative method to modulate the Andreev reflection.  相似文献   

3.
基于Bogoliubov-de Gennes方程和Blonder-Tinkham-Klapwijk理论研究了三维拓扑绝缘体基铁磁/各向异性f-波超导隧道结的Andreev反射,其中f-波超导体选取f1和f2-波两种配对势.研究发现,对于f1和f2波,铁磁体中的磁能隙可以增强传统的Andreev逆向反射,但对Andreev镜面反射有抑制作用;但随着施加在超导体顶部电极上的栅极电位的增加,两种类型的反射都会增强.通过改变磁能隙,可以调节两种反射在准粒子输运过程中占有优势的程度.这些结果提供了一种实验检测拓扑绝缘体薄膜中镜面Andreev反射的方法.此外,隧穿电导和散粒噪声谱的差异可用于区分f1和f2波配对势.  相似文献   

4.
We report a theoretical investigation of the spin-dependent Andreev reflection at the interface of a graphene-based ferromagnet/superconductor junction. It is found that the ferromagnetic exchange interaction in the ferromagnet can suppress Andreev retroreflection but enhance the specular Andreev reflection. There is a transition between the specular Andreev reflection and Andreev retroreflection at which the shot noise vanishes and the Fano factor has a universal value. The present work provides a new method of detecting the specular Andreev reflection, which can be experimentally tested within the present-day technique.  相似文献   

5.
郑翌洁  宋俊涛  李玉现 《中国物理 B》2016,25(3):37301-037301
When two three-dimensional topological insulators(TIs) are brought close to each other with their surfaces aligned,the surfaces form a line junction. Similarly, three TI surfaces, not lying in a single plane, can form an atomic-scale nanostep junction. In this paper, Andreev reflection in a TI–TI–superconductor nanostep junction is investigated theoretically. Because of the existence of edge states along each line junction, the conductance for a nanostep junction is suppressed. When the incident energy(ε) of an electron is larger than the superconductor gap(?), the Andreev conductance in a step junction is less than unity while for a plane junction it is unity. The Andreev conductance is found to depend on the height of the step junction. The Andreev conductance exhibits oscillatory behavior as a function of the junction height with the amplitude of the oscillations remaining unchanged when ε = 0, but decreasing for ε = ?, which is different from the case of the plane junction. The height of the step is therefore an important parameter for Andreev reflection in nanostep junctions, and plays a role similar to that of the delta potential barrier in normal metal–superconductor plane junctions.  相似文献   

6.
Taking into account the effects of quantum interference and interface scattering, combining the electron current with hole current contribution to tunnel current,we study the coherent quantum transport in normal-metal/d-wave superconductor/normal-metal (NM/d-wave SC/NM) double tunnel junctions by using extended Blonder-Tinkham-Klapwijk (BTK) approach. It is shown that all quasiparticle transport coefficients and conductance spectrum exhibit oscillating behavior with the energy, in which periodic vanishing of Andreev reflection (AR) above superconducting gap is found.In tunnel limit for the interface scattering strength taken very large, there are a series of bound states of quasiparticles formed in SC.  相似文献   

7.
Ju Peng 《Physics letters. A》2008,372(21):3878-3881
We theoretically report a nonlocal Andreev reflection in an Aharonov-Bohm interferometer, which is a three-terminal normal metal/superconductor (NS) mesoscopic hybrid system. It is found that this nonlocal Andreev reflection is sensitive to the systematic parameters, such as the bias voltages, the quantum dot levels, and the external magnetic flux. If we set the chemical potential of one normal metal lead equal to zero, the electronic current in the lead results from two competing processes: the quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero electronic current signals unambiguously the existence of this nonlocal Andreev reflection.  相似文献   

8.
Andreev reflection at a Pb/CrO(2) point contact has been used to determine the spin polarization of single-crystal CrO(2) films made by chemical vapor deposition. The spin polarization is found to be 0.96 +/- 0.01, which confirms that CrO(2) is a half-metallic ferromagnet, as theoretically predicted.  相似文献   

9.
We study Andreev tunneling through a ferromagnet/quantum-dot (QD)/superconductor system. By usingnonequilibrum Green function method, the averaged occupation of electrons in QD and the Andreev tunneling currentare studied. Comparing to the norma-metal/quantum-dot/superconductor, the system shows significant changes: (i)The averaged occupations of spin-up and spin-down electrons are not equal. (ii) With the increase of the polarizationof ferromagnetic lead, the Andreev reflection current decreases. (iii) However, even the ferromagnetic lead reaches fullpolarization, the averaged occupation of spin-down electrons is not zero. The physics of these changes is discussed.  相似文献   

10.
Four-component Bogoliubov-de Gennes equations are applied to study the tunnelling conductance spectra G( E) of half-metallic ferromagnet/ferromagnet/s-wave superconductor tunnel junctions. It is found that only for noncollinear magnetizations, there exists nonzero G( E) structure within the energy gap, which is a signature of appearance of the novel Andreev reflection and spin-triplet pairing correlations.  相似文献   

11.
A superconductor-topological insulator-superconductor (S/TI/S) junction having normal region at angle θ is studied theoretically to investigate the junction angle dependency of the Andreev reflection and the formation of the Andreev bound states in the step and planar S/TI/S structures. It is found that the Andreev reflection becomes θ dependent only in the presence of the potential barrier at the TI/S interface. In particular, the step and planar TI/S junction have totally different conductive behavior with bias voltage and potential barrier in the regime of retro and specular Andreev reflection. Interestingly, we find that the elliptical cross section of Dirac cone, an important feature of topological insulator with step surface defect, affects the Fabry-Perot resonance of the Andreev reflection induced Andreev bound states (which become Majorana zero energy states at low chemical potential) in the step S/TI/S structure. Unlike the usual planar S/TI/S structures, we find these ellipticity affected Andreev bound states lead to non-monotonic Josephson super-current in the step S/TI/S structure whose non-monotonicity can be controlled with the use of the potential barrier, which may find applications in nanoelectronics.  相似文献   

12.
Along the lines of Blonder, Tinkham and Klapwijk, we investigate the charge transport through ferromagnet/two-dimensional electronic gas/d-wave superconductor (F/2DEG/S) junctions in the presence of Rashba spin-orbit (SO) coupling and focus our attention on the interplay between spin polarization and spin precession. At zero spin polarization, the spin-mixing scattering resulted from Rashba SO coupling decreases the zero-bias conductance peak. Under spin polarization, spin precession introduces novel Andreev reflection, which competes with the effect of spin-mixing scattering. If the F layer is a half metal, the later effect is overwhelmed by that of novel Andreev reflection. As a result, the zero-bias conductance dip caused by spin polarization is enhanced, and at strong Rashba SO coupling, a split zero-bias peak is found in the gap. In an intermediate region where the two effects are comparable with each other, the zero-bias conductance shows a reentrant behavior as a function of Rashba SO coupling.  相似文献   

13.
Nonlocal currents, in devices where two normal-metal terminals are contacted to a superconductor, are determined using the circuit theory of mesoscopic superconductivity. We calculate the conductance associated with crossed Andreev reflection and electron transfer between the two normal-metal terminals, in addition to the conductance from direct Andreev reflection and quasiparticle tunneling. Dephasing and proximity effect are taken into account. PACS 74.45.+c, 74.25.Fy, 73.23.-b  相似文献   

14.
We analyze the charge transport between a one-dimensional weakly interacting electron gas and a superconductor within the scaling approach in the basis of scattering states. We derive the renormalization group equations, which fully account for the intrinsic energy dependence due to Andreev reflection. A strong renormalization of the corresponding reflection phase is predicted even for a perfectly transparent metal-superconductor interface. The interaction-induced suppression of the Andreev conductance is shown to be highly sensitive to the normal-state resistance, providing a possible explanation of experiments with carbon-nanotube/superconductor junctions by Morpurgo et al. [Science 286, 263 (1999)].  相似文献   

15.
Taking into account the effects of quantum interference and interface scattering, combining the electron current with hole current contribution to tunnel current, we study the coherent quantum transport in normal-metal/d-wave superconductor/ normal-metal (NM/d-wave SC/NM) double tunnel junctions by using extended Blonder-Tinkham-Klapwijk (BTK) approach. It is shown that all quasiparticle transport coefficients and conductance spectrum exhibit oscillating behavior with the energy, in which periodic vanishing of Andreev reflection (AR) above superconducting gap is found. In tunnel limit for the interface scattering strength taken very large, there are a series of bound states of quasiparticles formed in SC.  相似文献   

16.
彭菊  郁华玲  王之国 《中国物理 B》2009,18(12):5485-5490
This paper theoretically reports the nonlocal Andreev reflection and spin current in a normal metal-ferromagnetic metal-superconducting Aharonov--Bohm interferometer. It is found that the electronic current and spin current are sensitive to systematic parameters, such as the gate voltage of quantum dots and the external magnetic flux. The electronic current in the normal metal lead results from two competing processes: quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero spin-up electronic current (or spin-down electronic current) signals the existence of nonlocal Andreev reflection, and the presence of zero electronic current results in the appearance of pure spin current.  相似文献   

17.
The spin polarization P of the transport current through the interface between superconducting Al and ferromagnetic Fe is determined by means of Andreev reflection at nanostructured point contacts. We observe a systematic decrease of P with decreasing contact resistance. Our data provide evidence for the reduction of P by spin-orbit scattering and thus establish a link between density of states and transport spin polarizations.  相似文献   

18.
Tunneling conductance in clean ferromagnet/ ferromagnet/d-wave superconductor (F/F/d-wave S) double tunnel junctions is studied by use of four-component Bogoliubov-de Gennes equations. The novel Andreev reflection appears due to noncollinear magnetizations, in which the incident electron and the Andreev-reflected hole come from the same spin subband, resulting in spin-triplet pairing states near the F/S interface. In the highly polarized Fs case, the conductance within the energy gap exhibits a conversion from a zero-bias dip in the parallel magnetizations to a spilt zero-bias peak in the perpendicular magnetizations.  相似文献   

19.
We find a novel channel of quasiparticle reflection from the simplest two-sublattice antiferromagnet (AF) on a bipartite lattice. Low-energy quasiparticles in a normal metal (N) experience spin-dependent retroreflection at AF/N interfaces. As a combined effect of antiferromagnetic and Andreev reflections, subgap Andreev states arise at an AF/superconductor (SC) interface. When the antiferromagnetic reflection dominates the specular one, Andreev bound states have almost zero energy on AF/s-wave superconductor (sSC) interfaces, whereas there are no low-energy subgap states on AF/d-wave superconductor (dSC) boundaries. For an sSC/AF/sSC junction, the bound states are found to split, due to the finite width of the AF interlayer, and carry the supercurrent. The theory developed in the present Letter is based on a novel quasiclassical approach, which applies to interfaces involving itinerant antiferromagnets.  相似文献   

20.
We review the mesoscopic transport in a diffusive proximity superconductor made of a normal metal (N) in metallic contact with a superconductor (S). The Andreev reflection of electrons on the N–S interface is responsible for the diffusion of electron pairs in N. Superconducting-like properties are induced in the normal metal. In particular, the conductivity of the N metal is locally enhanced by the proximity effect. A re-entrance of the metallic conductance occurs when all the energies involved (e.g. temperature and voltage) are small. The relevant characteristic energy is the Thouless energy which is divided by the diffusion time for an electron travelling throughout the sample. In loop-shaped devices, a 1 / T temperature-dependent oscillation of the magnetoresistance arises with a large amplitude from the long-range coherence of low-energy pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号