首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Some binary and ternary novel complexes of dioxouranium(VI) with 5-vinylsalicylaldehyde (VSH) have been prepared and characterized by various physico-chemical techniques. The amine exchange reactions of coordinated poly-Schiff bases in these complexes have been also carried out which give symmetrical tetradentate poly-Schiff base complexes. Metal exchange reaction of these dioxouranium(VI) complexes with copper(II) gives the corresponding Cu(II) complexes. Reaction of tetradentate poly-Schiff base complexes of Cu(II) so obtained with ZrCl4 gives heterobinuclear polymer complexes. Magnetic, electronic and IR spectral information commensurate that configurations of square planar copper(II) polymer complexes. All the polymer complexes are coloured and appear to be nonelectrolytes in DMF. The ligands behave as bi-(O, O) and tetradentate (N2, O2) donors. El-Sonbati equation was used to evaluate the symmetric stretching frequency from which the fU-O and fUO, UO- were calculated.  相似文献   

2.
A series of new metal complexes of Co(II), Ce(III) and UO(2)(VI), with the Schiff base ligand, H2L, bis-salicylatothiosemicarbazide have been prepared in presence of different molar ratios of LiOH.H2O as a deprotonating agent. Also, the ternary complexes were prepared by using 2-aminopyridine (2-Ampy) or oxalic acid (Ox) as a secondary ligand. All synthesized compounds were identified and confirmed by elemental analyses, molar conductivities, spectral (UV-Vis, IR, 1H NMR, mass) and magnetic moment measurements as well as TG-DSC technique. The changes in the selected vibrational absorption bands in IR and NMR spectra of the Schiff base ligand upon coordination indicate that, the ligand behaves as a neutral, monoanionic and/or dianionic tetradentate manner with ONNO donor sites. Conductance measurements suggest the non-electrolytic and 1:1 electrolytic nature of the metal complexes. Thermal studies suggest a mechanism for degradation of the metal complexes as function of temperature supporting the chelation modes, moreover, show the possibility of obtaining new complexes pyrolytically in the solid state which cannot be synthesized from solution. Antimicrobial screening of the free ligand and its binary complexes showed that, the free ligand and some metal complexes possess antimicrobial activities towards four type of bacteria and five types of fungi and these results were compared with eleven type of known antibiotics.  相似文献   

3.
A series of new copper(II), cobalt(II), nickel(II), manganese(II), iron(III), and uranyl(VI) complexes of the Schiff base hydrazone 7-chloro-4-(benzylidene-hydrazo)quinoline (HL) were prepared and characterized. The Schiff base behaves as a monobasic bidentate ligand. Mononuclear complexes with the general composition [ML2(Cl)m(H2O)2(OEt)n] x xEtOH (M = Cu(II), Co(II), Ni(II), Mn(II), Fe(III) or UO2(VI); m and n = 0-1; x = 1-3) were obtained in the presence of Li(OH) as a deprotonating agent. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, infrared, electronic spectra, magnetic susceptibility and conductivity measurements. An octahedral geometry was suggested for all the complexes except the Cu(II) and UO2(VI) ones. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, while the UO2(VI) complex displays its favored heptacoordination. The Schiff base ligand, HL, and its complexes were tested against one strain gram +ve bacteria (Staphylococcus aureus), gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The prepared metal complexes exhibited higher antibacterial activities than the parent ligand and their biopotency is discussed.  相似文献   

4.
Keeping in view the chemotherapeutic of the sulfa-drugs, Schiff base namely 2-thiophene carboxaldehyde-sulfametrole (HL) and its tri-positive and di-positive metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA and DrTG). The low molar conductance values suggest the non-electrolytic nature of these complexes. IR spectra show that HL is coordinated to the metal ions in a tetradentate manner through hetero five-membered ring-S and azomethine-N, enolic sulfonamide-OH and thiadiazole-N, respectively. Zn(II), Cd(II) and UO2(II) complexes are found to be diamagnetic (as expected). The proposed general formulae of the prepared complexes are [M2X4(HL)(H2O)4] (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, [Fe2Cl6(HL)(H2O)2], [(FeSO4)2(HL)(H2O)4] and [(UO2)2(HL) (NO3)4].H2O. The thermal behaviour of these chelates shows that the hydrated complexes loss water of hydration in first step in case of uranium complexes followed loss coordinated water followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as DeltaE*, DeltaH*, DeltaS*, and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The antimicrobial activity of the obtained products was performed using Chloramphenicol and Grisofluvine as standards, indicate that in some cases metallation increase activity than the ligand.  相似文献   

5.
Reaction of 8-hydroxy-7-quinolinecarboxaldehyde (LH) with RuC3 x XH2O afforded the compounds [RuL3] and/or [RuL2CIOH2]. Reactions of LH with RuCl3 x XH2O in the presence of N-heterocyclic bases led to the formation of complexes of type [RuL2 x ClPy] and [RuLCl2(o-Phen)] (Py = pyridine or o-Phen = 1,10-phenanthroline). The amine exchange reactions of coordinated Schiff bases in these complexes have been also carried out which give symmetrical tetradentate Schiff base complexes. These complexes were characterized by a combination of elemental analysis, IR, magnetic susceptibility measurements, 1H, 13C NMR and electronic spectral analysis methods. The spectral data were utilized to compute the important ligand field parameters B, beta and Dq. Electronic spectra show all complexes are octahedral. The B-values suggest a strong covalency in the metal-ligand sigma-bond and the Dq-values indicate a medium-strong ligand field. The stereochemistry and the nature of the complexes are markedly dependent upon the molar ratios of the reactants, the pH of the system and the nature of the anions involved. The ligands behave as bi-(0,0) and tetradentate (N2,O2) donors.  相似文献   

6.
Summary The syntheses of several new coordination complexes of nickel(II), cobalt(II), manganese(II), copper(II), zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) with new Schiff bases derived from 2-benzothiazolecarbohydrazide and salicylaldehyde or 2-hydroxy-1-naphthaldehyde are described. These complexes have been characterised by elemental analyses, electrical conductance, magnetic susceptibility, molecular weight, i.r. and electronic spectra. The Schiff bases behave as dibasic and tridentate ligands coordinating through the ONO donor system and form complexes of the types NiL · 3H2O, MnL · 2H2O, CoL · 2H2O, CuL, ZnL · H2O, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complexes exhibit subnormal magnetic moments indicating the presence of an antiferromagnetic exchange interaction, whereas the nickel(II), cobalt(II) and manganese(II) complexes behave normally at room temperature. Zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) complexes are diamagnetic; the zinc (II) complexes are tetrahedral, the copper(II) complexes are square planar, all the other complexes are octahedral. Thev(C=N),v(C-O),v(N-N) andv(C-S) shifts have been measured in order to locate the Schiff base coordination sites.  相似文献   

7.
Microwave synthesis, is green chemical method, simple, sensitive, reducing solvent amount and reaction time. The attempt was made to synthesize the unsymmetrical tetradentate N(2)O(2) ligands and their VO(IV) and MoO(V) unsymmetrical tetradentate Schiff base complexes by classical and microwave techniques using domestic microwave oven. The resulting unsymmetrical Schiff base ligands L(1)-L(3) characterized by different spectral methods. Their complexes with oxocations of VO(IV) and MoO(V) have been synthesized and characterized by elemental analyses, conductometric measurements, infrared and electronic absorption, (1)H NMR spectra, mass spectrometry, ESR spectra, magnetic susceptibility measurement and thermal study. The study suggests that the oxo metal ion is bonded to the ligand through the oxygen and imino nitrogen and the geometry around metal ion is distorted octahedral.  相似文献   

8.
Metal (M=Zn(II), Ni(II), Cu(II)) complexes with tetradentate Schiff base ligand, bis(pyrrol-2-ylmethyleneamine)phenyl, has been synthesized and characterized by elemental analyses, (1)H NMR, mass spectra and UV-vis spectra. The standard association constants (K(theta)) and the thermodynamic parameters (Delta(r)H(m)(theta),Delta(r)S(m)(theta),Delta(r)G(m)(theta)) for axial coordination of imidazole derivatives with these Shiff base complexes were measured with UV-vis spectrophotometric titration. The decrease of enthalpy is found to be the drive of the axial coordination. Our Schiff base complexes can incorporate two axial ligands, except 2-Et-4-MeIm with two big substituents of great steric bulk according to stoichiometry of 1:1. ZnL displays high selectively binding to imidazole due to the steric bulk effect. Supporting density functional theory (DFT) calculations have been undertaken on B3LYP/6-31G(d) level.  相似文献   

9.
Oxygen absorption–desorption processes for square planar Mn(II), Co(II) and Mn(II) complexes of tetradentate Schiff base ligands in DMF and chloroform solvents were investigated. The tetradentate Schiff base ligands were obtained by condensation reaction of ethylenediamine with salcyldehyde, o-hydroxyacetophenone or acetylacetone in the molar ratio 1:2. The square planar complexes were prepared by the reaction of the Schiff base ligands with Mn(II) acetate, Co(II) nitrate and Ni(II) nitrate in dry ethanol under nitrogen atmosphere. The sorption processes were undertaken in the presence and absence of (pyridine) axial-base in 1:1 M ratio of (pyridine:metal(II) complexes). Complexes in DMF indicate significant oxygen affinity than in chloroform solvent. Cobalt(II) complexes showed significant sorption processes compared to Mn(II) and Ni(II) complexes. The presence of pyridine axial base clearly increases oxygen affinity.  相似文献   

10.
Three new cation-cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO(2)py(5))(KI(2)py(2))](n) (1) with the Schiff base ligands salen(2-), acacen(2-), and salophen(2-) (H(2)salen = N,N'-ethylene-bis(salicylideneimine), H(2)acacen = N,N'-ethylenebis(acetylacetoneimine), H(2)salophen = N,N'-phenylene-bis(salicylideneimine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen(2-) in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetranuclear complexes, {[UO(2)(acacen)](4)[μ(8)-](2)[K([18]C-6)(py)](2)} (3) and {[UO(2)(acacen)](4)[μ(8)-]}?2?[K([222])(py)] (4), {[UO(2)(salophen)](4)[μ(8)-K](2)[μ(5)-KI](2)[(K([18]C-6)]}?2?[K([18]C-6)(thf)(2)]?2?I (5), and {[UO(2)(salen)(4)][μ(8)-Rb](2)[Rb([18]C-6)](2)} (9) ([222] = [222]cryptand, py = pyridine), presenting a T-shaped cation-cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetranuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U(V)O(2)(salen)(py)][Cp*(2)Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation-cation complexes. The nature of the cation plays a key role in the preparation of stable cation-cation complexes. Stable tetranuclear complexes form in the presence of K(+) and Rb(+), whereas Li(+) leads to disproportionation. A new uranyl-oxo cluster was isolated from this reaction. The reaction of [U(V)O(2)(salen)(py)][Cp*(2)Co] (Cp* = pentamethylcyclopentadienyl) with its U(VI) analogue yields the oxo-functionalized dimer [UO(2)(salen)(py)](2)[Cp*(2)Co] (8). The reaction of the {[UO(2)(salen)(4)][μ(8)-K](2)[K([18]C-6)](2)} tetramer with protons leads to disproportionation to U(IV) and U(VI) species and H(2)O confirming the crucial role of the proton in the U(V) disproportionation.  相似文献   

11.
Structural isomers of [UO(2)(oxalate)(3)](4-), [UO(2)(oxalate)F(3)](3-), [UO(2)(oxalate)(2)F](3-), and [UO(2)(oxalate)(2)(H(2)O)](2-) have been studied by using EXAFS and quantum chemical ab initio methods. Theoretical structures and their relative energies were determined in the gas phase and in water using the CPCM model. The most stable isomers according to the quantum chemical calculations have geometries consistent with the EXAFS data, and the difference between measured and calculated bond distances is generally less than 0.05 A. The complex [UO(2)(oxalate)(3)](4-) contains two oxalate ligands forming five-membered chelate rings, while the third is bonded end-on to a single carboxylate oxygen. The most stable isomer of the other two complexes also contains the same type of chelate-bonded oxalate ligands. The activation energy for ring opening in [UO(2)(oxalate)F(3)](3-), deltaU++ = 63 kJ/mol, is in fair agreement with the experimental activation enthalpy, deltaH++ = 45 +/- 5 kJ/mol, for different [UO(2)(picolinate)F(3)](2-) complexes, indicating similar ring-opening mechanisms. No direct experimental information is available on intramolecular exchange in [UO(3)(oxalate)(3)](4-). The theoretical results indicate that it takes place via the tris-chelated intermediate with an activation energy of deltaU++ = 38 kJ/mol; the other pathways involve multiple steps and have much higher activation energies. The geometries and energies of dioxouranium(VI) complexes in the gas phase and solvent models differ slightly, with differences in bond distance and energy of typically less than 0.06 A and 10 kJ/mol, respectively. However, there might be a significant difference in the distance between uranium and the leaving/entering group in the transition state, resulting in a systematic error when the gas-phase geometry is used to estimate the activation energy in solution. This systematic error is about 10 kJ/mol and tends to cancel when comparing different pathways.  相似文献   

12.
The synthesis and characterization is reported of four iron(III) complexes of general formula [Fe(pythsalX)(H2O)2]Cl2, derived from the NSNO-donor tetradentate Schiff base ligands pythsalHX ([5-X-N-(2-pyridylethylsulfanylethyl)salicylideneimine] (X = OMe, N2Ph, I, NO2). The complexes were characterized by physico-chemical and spectroscopic methods. The thermal stabilities of both the free Schiff bases and their complexes were studied by differential scanning calorimetry and thermogravimetric analyses. The spectroscopic data suggest that the Schiff base ligands coordinate through deprotonated phenolic oxygen, imine, and pyridine-type nitrogens and the thioether sulfur atoms to give an octahedral geometry around the iron(III) atom in all these complexes. The free Schiff bases and their complexes have been screened for antimicrobial activities and the results show that the free Schiff bases are more potent antibacterials than the complexes.  相似文献   

13.
Summary Many new oxomolybdenum(V) and dioxomolybdenum(VI) complexes have been synthesized with tri- and tetradentate Schiff bases derived by the condensation of salicylaldehyde, thiosalicylaldehyde,o-hydroxyacetophenone, 3-carboxysalicyclaldehyde or acetylacetone with aminoalcohols, polymethylenediamines ando-phenylenediamines. Mononuclear oxothiolato Schiff base complexes of molybdenum(V) have been prepared for the first time. Quadridentate Schiff bases derived from salicylaldehyde and substituted salicylaldehydes ando-phenylenediamine have also been successfully employed to isolate dioxomolybdenum(VI) complexes in the solid state, in which two oxygen atoms of the MoO2 group arecis- to each other, similar to the situation observed for other dioxomolybdenum(VI) complexes of salicylaldehyde-polymethylenediamine Schiff base ligands.Structures have been determined with the help of elemental analyses, magnetic susceptibilities, molar conductances, i.r., electronic and1H n.m.r. spectral data.For Part IX, K. Dey, R. K. Maiti and J. K. Bhar,Indian J. Chem., in press.  相似文献   

14.
Some neutral tetradentate N2O2 type complexes of Co(II) have been synthesized using Schiff bases formed by condensation of 5-nitro-salicylaldehyde with various diamines in alcohol. The nature of the ligands and complexes was established by spectroscopic techniques. The Schiff bases are bivalent anions with tetradentate ONNO donors derived from phenolic oxygen and azomethine nitrogen. IR and UV-Vis spectral data suggest that all the complexes are square-planar.  相似文献   

15.
New Schiff base complexes of zinc(II), copper(II), nickel(II), and vanadium(IV) were synthesized using the Schiff base ligand formed by the condensation of 2-aminoethanethiol and 2-hydroxy-1-naphthaldehyde. The tetradentate Schiff base ligand N,N´-(3,4-dithiahexane-1,6-diyl)bis(2-hydroxy-1-naphthaleneimine), containing a disulfide bond, was coordinated to the metal(II) ions through the two azomethine nitrogen atoms and two deprotonated phenolic oxygens of two different ligands which was connected to each other by sulfur-sulfur bond. The molar conductivity values of complexes in DMSO solvent implied the presence of nonelectrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were studied in dimethylsulfoxide. The Schiff base ligand and its complexes were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of tetradentate Schiff base ligand was characterized by single crystal X-ray diffraction. The Schiff base ligand was contained disulfide bond. Furthermore, the binding interaction of these complexes with calf thymus DNA (CT-DNA) was investigated by different methods.  相似文献   

16.
Gas-phase complexes containing dioxouranium(V) cations ([UO(2)](+)) ligated with two or three sigma-donating acetone ligands reacted with dioxygen to form [UO(2)(A)(2,3)(O(2))](+), where A is acetone. Collision-induced dissociation studies of [UO(2)(A)(3)(O(2))](+) showed initial loss of acetone, followed by elimination of O(2), which suggested that O(2) was bound more strongly than the third acetone ligand, but less strongly than the second. Similar behavior was observed for complexes in which water was substituted for acetone. Binding of dioxygen to [UO(2)](+) containing zero, one, or four ligands did not occur, nor did it occur for analogous ligated U(IV)O(2) or U(VI)O(2) ions. For example, only addition of acetone and/or H(2)O occurred for the U(VI) species [UO(2)OH](+), with the ligand addition cascade terminating in formation of [UO(2)OH(A)(3)](+). Similarly, the U(IV) species [UOOH](+) added donor ligands, which produced the mixed-ligand complex [UOOH(A)(3)(H(2)O)](+) as the preferred product at the longest reaction times accessible. Since dioxygen normally functions as an electron acceptor, an alternative mode for binding dioxygen to the cationic U(V)O(2) center is indicated that is dependent on the presence of an unpaired electron and donor ligands in the uranyl valence orbitals.  相似文献   

17.
Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [N(1)-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M2X3(HL)(H2O)5].yH2O (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, y=0-3); [Fe2Cl5(HL)(H2O)3].2H2O; [(FeSO4)2(H2L)(H2O)4] and [(UO2)2(NO3)3(HL)(H2O)].2H2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi (Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.  相似文献   

18.
Two new nickel(II) complexes [Ni(2)L(2)(PhCOO)(2)(H(2)O)] (1), [Ni(2)L(2)(PhCH(2)COO)(2)(H(2)O)] (2) have been synthesized using a tridentate Schiff base ligand, HL (2-[(3-dimethylamino-propylimino)-methyl]-phenol) and the carboxylate monoanions, benzoate and phenylacetate, respectively. The complexes have been characterized by spectral analysis, variable temperature magnetic susceptibility measurement and crystal structure analysis. The structural analyses reveal that both complexes are dinuclear in which the distorted octahedral Ni(2+) ions share a face, bridged by one water molecule and two μ(2)-phenoxo oxygen atoms. A monodentate benzoate or phenylacetate anion and two nitrogen atoms of the chelating deprotonated Schiff base (L) complete the hexa-coordination around the metal ion. Variable-temperature magnetic susceptibility studies indicate the presence of dominant ferromagnetic exchange coupling in complexes 1 and 2 with J values of 11.1(2) and 10.9(2) cm(-1) respectively. An attempt has been made to rationalize the observed magneto-structural behavior considering the importance of the additional water bridge in the present two complexes and also in other similar species.  相似文献   

19.
The reaction of uranyl nitrate hexahydrate with the maleonitrile containing Schiff base 2,3-bis[(4-diethylamino-2-hydroxybenzylidene)amino]but-2-enedinitrile (salmnt((Et(2)N)(2))H(2)) in methanol produces [UO(2)(salmnt((Et2N)2))(H(2)O)] (1) where the uranyl equatorial coordination plane is completed by the N(2)O(2) tetradentate cavity of the (salmnt((Et(2)N)(2)))(2-) ligand and a water molecule. The coordinated water molecule readily undergoes exchange with pyridine (py), dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF) and triphenylphosphine oxide (TPPO) to give a series of [UO(2)(salmnt((Et(2)N)(2)))(L)] complexes (L = py, DMSO, DMF, TPPO; 2-5, respectively). X-Ray crystallography of 1-5 show that the (salmnt((Et(2)N)(2)))(2-) ligand is distorted when coordinated to the uranyl moiety, in contrast to the planar structure observed for the free protonated ligand (salmnt((Et(2)N)(2))H(2)). The Raman spectra of 1-5 only display extremely weak bands (819-828 cm(-1)) that can be assigned to the typically symmetric O=U=O stretch. This stretching mode is also observed in the infrared spectra for all complexes 1-5 (818-826 cm(-1)) predominantly caused by the distortion of the tetradentate (salmnt((Et(2)N)(2)))(2-) ligand about the uranyl equatorial plane resulting in a change in dipole for this bond stretch. The solution behaviour of 2-5 was studied using NMR, electronic absorption and emission spectroscopy, and cyclic voltammetry. Complexes 2-5 exhibit intense absorptions in the visible region of the spectrum due to intramolecular charge transfer (ICT) transitions and the luminescence lifetimes (< 5 ns) indicate the emission arises from ligand-centred excited states. Reversible redox processes assigned to the {UO(2)}(2+)/{UO(2)}(+) couple are observed for complexes 2-5 (2: E(1/2) = -1.80 V; 3,5: E(1/2) = -1.78 V; 4: E(1/2) = -1.81 V : vs. ferrocenium/ferrocene {Fc(+)/Fc}, 0.1 M Bu(4)NPF(6)) in dichloromethane (DCM). These are some of the most negative half potentials for the {UO(2)}(2+)/{UO(2)}(+) couple observed to date and indicate the strong electron donating nature of the (salmnt((Et(2)N)(2)))(2-) ligand. Multiple uranyl redox processes are clearly seen for [UO(2)(salmnt((Et(2)N)(2)))(L)] in L (L = py, DMSO, DMF; 2-4: 0.1 M Bu(4)NPF(6)) indicating the relative instability of these complexes when competing ligands are present, but the reversible {UO(2)}(2+)/{UO(2)}(+) couple for the intact complexes can still be assigned and shows the position of this couple can be modulated by the solvation environment. Several redox processes were also observed between +0.2 and +1.2 V (vs. Fc(+)/Fc) that prove the redox active nature of the maleonitrile-containing ligand.  相似文献   

20.
The structure, thermodynamics and kinetics of the binary and ternary uranium(VI)-ethylenediamine-N,N'-diacetate (in the following denoted EDDA) fluoride systems have been studied using potentiometry, 1H, 19F NMR spectroscopy and X-ray diffraction. The UO2(2+)-EDDA system could be studied up to -log[H3O+] = 3.4 where the formation of two binary complexes UO2(EDDA)(aq) and UO2(H3EDDA)3+ were identified, with equilibrium constants logbeta(UO2EDDA) = 11.63 +/- 0.02 and logbeta(UO2H3EDDA3+) = 1.77 +/- 0.04, respectively. In the ternary system the complexes UO2(EDDA)F-, UO2(EDDA)(OH)- and (UO2)2(mu-OH)2(HEDDA)2F2(aq) were identified; the latter through 19F NMR. 1H NMR spectra indicate that the EDDA ligand is chelate bonded in UO2(EDDA)(aq), UO2(EDDA)F- and UO2(EDDA)(OH)- while only one carboxylate group is coordinated in UO2(H3EDDA)3+. The rate and mechanism of the fluoride exchange between UO2(EDDA)F- and free fluoride was studied by 19F NMR spectroscopy. Three reactions contribute to the exchange; (i) site exchange between UO2(EDDA)F- and free fluoride without any net chemical exchange, (ii) replacement of the coordinated fluoride with OH- and (iii) the self dissociation of the coordinated fluoride forming UO2(EDDA)(aq); these reactions seem to follow associative mechanisms. (1)H NMR spectra show that the exchange between the free and chelate bonded EDDA is slow and consists of several steps, protonation/deprotonation and chelate ring opening/ring closure, the mechanism cannot be elucidated from the available data. The structure (UO2)2(EDDA)2(mu-H2EDDA) was determined by single crystal X-ray diffraction and contains two UO2(EDDA) units with tetracoordinated EDDA linked by H2EDDA in the "zwitterion" form, coordinated through a single carboxylate oxygen from each end to the two uranium atoms. The geometry of the complexes indicates that there is no geometric constraint for an associative ligand substitution mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号