首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A brief account of the zero temperature magnetic response of a system of strongly correlated electrons in strong magnetic field is given in terms of its quasiparticle properties. The scenario is based on the paramagnetic phase of the half-filled Hubbard model, and the calculations are carried out with the dynamical mean field theory (DMFT) together with the numerical renormalization group (NRG). As well known, in a certain parameter regime one finds a magnetic susceptibility which increases with the field strength. Here, we analyze this metamagnetic response based on Fermi liquid parameters, which can be calculated within the DMFT-NRG procedure. The results indicate that the metamagnetic response can be driven by field-induced effective mass enhancement. However, also the contribution due to quasiparticle interactions can play a significant role. We put our results in context with experimental studies of itinerant metamagnetic materials.  相似文献   

2.
The low-energy physics of the fractional Hall liquid is described in terms of quasiparticles that are qualitatively distinct from electrons. We show, however, that a long-lived electronlike quasiparticle also exists in the excitation spectrum: the state obtained by the application of an electron creation operator to a fractional quantum Hall ground state has a nonzero overlap with a complex, high energy bound state containing an odd number of composite-fermion quasiparticles. The electron annihilation operator similarly couples to a bound complex of composite-fermion holes. We predict that these bound states can be observed through a conductance resonance in experiments involving a tunneling of an external electron into the fractional quantum Hall liquid. A comment is made on the origin of the breakdown of the Fermi liquid paradigm in the fractional Hall liquid.  相似文献   

3.
Pseudogap phenomena are observed for the normal underdoped phase of different high-T c cuprates. Among others, the Bi2Sr2CaCu2O8 − δ (Bi2212) compound is one of the most studied experimentally. To describe the pseudogap regime in Bi2212, we use a novel generalized ab initio LDA + DMFT + Σk hybrid scheme. This scheme is based on the strategy of one of the most powerful computational tools for real correlated materials: the local density approximation (LDA) + dynamical mean-field theory (DMFT). Conventional LDA + DMFT equations are here supplied with an additional (momentum-dependent) self-energy Σk in the spirit of our recently proposed DMFT + Σk approach taking into account pseudogap fluctuations. In the present model, Σk describes nonlocal correlations induced by short-range collective Heisenberg-like antiferromagnetic spin fluctuations. The effective single-impurity problem of the DMFT is solved by the numerical renormalization group (NRG) method. Material-specific model parameters for the effective x 2y 2 orbital of Cu-3d shell of the Bi2212 compound, e.g., the values of intra-and interlayer hopping integrals between different Cu sites, the local Coulomb interaction U, and the pseudogap potential Δ were obtained within the LDA and LDA + DMFT schemes. Here, we report on the theoretical LDA + DMFT + Σk quasiparticle band dispersion and damping, Fermi surface renormalization, momentum anisotropy of (quasi)static scattering, densities of states, spectral densities, and angular-resolved photoemission (ARPES) spectra, taking into account pseudogap and bilayer splitting effects for normal (slightly) underdoped Bi2212 (δ = 0.15). We show that LDA + DMFT + Σk successfully describes strong (pseudogap) scattering close to Brillouin zone boundaries. Our calculated LDA + DMFT + Σk Fermi surfaces and ARPES spectra in the presence of pseudogap fluctuations are almost insensitive to the bilayer splitting strength. However, our LDA-calculated value of bilayer splitting is rather small to describe the experimentally observed peak-dip-hump structure. The results obtained are in good semiquantitative agreement with various recent ARPES experiments. The article was submitted by the authors in English.  相似文献   

4.
The self-consistent theory of the finite Fermi systems is outlined. This approach is based on the same Fermi liquid theory principles as the familiar theory for finite Fermi systems (FFS) by Migdal. We show that the basic Fermi system properties can be evaluated in terms of the quasiparticle Lagrangian Lq which incorporates the energy dependency effects. This Lagrangian is defined so that the corresponding Lagrange equations should coincide with the FFS theory equations of motion of the quasiparticles. The quasiparticle energy Eq defined in the terms of t he quasiparticle Lagrangian Lq according to the usual canonical rules is shown to be equal to the binding energy Eo of the system. For a given Lagrangian Lq the particle densities in nuclei, the nuclear single-particle spectra, the low-lying collective states (LCS) properties, and the amplitude of the interquasiparticle interaction are also evaluated. The suggested approach is compared with the Hartree-Fock theory with effective forces.  相似文献   

5.
We propose a generalization of the LDA + DMFT + Σ k approach to the multiband case, in which correlated and uncorrelated states are present in the model simultaneously. Using the multiband version of the LDA + DMFT + Σ k approach, we calculate the density of states and spectral functions for the Emery model in a wide energy interval around the Fermi level. We also obtain the Fermi surfaces for the electron-doped high-temperature superconductor Nd2 ? x Ce x CuO4 in the pseudogap phase. The self-energy part Σ k introduced additionally to take into account pseudogap fluctuations describes the nonlocal interaction of correlated electrons with collective Heisenberg short-range spin fluctuations. To solve the effective impurity model, the numerical renorm-group (NRG) method is used for the DMFT equations. Good qualitative agreement of the Fermi surfaces calculated using the LDA + DMFT + Σ k approach and experimental angle-resolved photoemission spectroscopic data is attained. The stability of the dielectric solution with charge transfer in the Emery model with correction for double counting is analyzed in the Appendix.  相似文献   

6.
We consider quasiparticle propagation in constant-speed-of-sound (iso-tachic) and almost incompressible (iso-pycnal) hydrodynamic flows, using the technical machinery of general relativity to investigate the “effective space-time geometry” that is probed by the quasiparticles. This effective geometry, described for the quasiparticles of condensed matter systems by the Painlevé-Gullstrand metric, generally exhibits curvature (in the sense of Riemann) and many features of quasiparticle propagation can be re-phrased in terms of null geodesics, Killing vectors, and Jacobi fields. As particular examples of hydrodynamic flow we consider shear flow, a constant-circulation vortex, flow past an impenetrable cylinder, and rigid rotation.  相似文献   

7.
We present a detailed investigation of the dynamics of laser-excited quasiparticles in YBa2Cu3O7 thin films below the critical temperature. Reflectivity transients at low temperature trace the generation and recombination behavior of quasiparticles. The quasiparticle cascading and recombination rates are determined by comparison with a detailed nonlinear model of the quasiparticle dynamics based on extended Rothwarf-Taylor equations.  相似文献   

8.
Recent measurements of quasiparticles in hole-doped cuprates revealed highly unusual features: (i) the doping-independent Fermi velocity, (ii) two energy scales in the quasiparticle spectral function, and (iii) a suppression of the low-energy spectral weight near the zone center. We explain these important facts by a novel two-mode variational Monte Carlo (VMC) study of the t-J model, which resolves a long-standing issue of the sum rule for quasiparticle spectral weights in VMC studies. The electron-doped case is also discussed.  相似文献   

9.
B K SAHOO  B N PANDA 《Pramana》2011,77(4):715-726
The effect of hybridization of conduction electrons and f-level on superconductivity (SC) and antiferromagnetism (AFM) in the coexistent phase of rare-earth nickel borocarbide superconductors (RNi2B2C) is reported. The Hamiltonian of the system is a mean field one and has been solved by writing equations of motion for the single-particle Green functions. It is assumed that superconductivity arises due to BCS pairing mechanism in the presence of antiferromagnetism in nickel lattices of Ni2B2 plane. The expressions for superconducting and antiferromagnetic order parameters are derived using double time electron Green functions. The quasiparticle energy bands are plotted and the nature of band dispersion of the quasiparticles is studied.  相似文献   

10.
The full BCS Hamiltonian is given as a quasiparticle-conserving part Hc and a quasiparticle non-conserving one, Hnc. The moments of Hc can be calculated and propagated to different K-subspaces (subspaces of states with a well-defined number, K, of quasiparticles) by French's method. Here we give the propagation formulae for the second moment of Hac in terms of a small number of basic quantities. The spectral distribution method, applied so far to particle systems, can be therefore transcribed to quasiparticle ones. We derive also expressions for the partial widths, and study the extent to which the number of quasiparticles is conserved. Then we discuss a possible truncation of the quasiparticle basis and end up with a discussion on the behaviour of centroid energies and widths in different cases.  相似文献   

11.
The slightly underdoped high-temperature system La1.86Sr0.14CuO4 (LSCO) is studied by means of high-energy high-resolution angular resolved photoemission spectroscopy (ARPES) and the combined LDA + DMFT + Σ k computational scheme. The corresponding one-band Hubbard model is solved via dynamical mean field theory (DMFT), and the model parameters needed are obtained from first principles in the local density approximation (LDA). An “external” k-dependent self-energy Σ k describes the interaction of correlated electrons with antiferromagnetic (AFM) pseudogap fluctuations. Experimental and theoretical data clearly show a “destruction” of the LSCO Fermi surface in the vicinity of the (π, 0) point and formation of “Fermi arcs” in the nodal directions. ARPES energy distribution curves as well as momentum distribution curves demonstrate a deviation of the quasiparticle band from the Fermi level around the (π, 0) point. The same behavior of spectral functions follows from theoretical calculations suggesting the AFM origin of the pseudogap state.  相似文献   

12.
Nonlocal pseudopotentials which describe the effective interaction between3He quasiparticles, and between these quasiparticles and the background4He liquid, are obtained as a function of concentration and pressure by generalizing the Aldrich-Pines pseudopotentials for pure3He and4He to dilute mixtures. The hierarchy of physical effects which determine these pseudopotentials is established. Interaction-induced short-range correlations are the dominant physical feature; next in order of importance is the greater zero point motion associated with the replacement of a4He atom by a3He atom, while spin-induced Pauli principle correlations play a significantly smaller, albeit still important role. We find a consistent trend in the change of the effective direct quasiparticle interactions with increasing concentration, and show how the Aldrich-Pines pseudopotentials for pure3He quasiparticles represent a natural extension of our results for dilute mixtures. Our calculated nonlocal pseudopotential for3He quasiparticles is qualitatively similar to that proposed by Bardeen, Baym, and Pines; it changes sign at somewhat lower momentum transfers than the BBP result, varies little with concentration, and provides a physical basis for understanding the BBP result. The effective interaction between quasiparticles of parallel spin, here determined for the first time, is essentially repulsive in the very dilute limit; as the concentration increases, it becomes increasingly attractive at low momentum transfers, and resembles closely that between antiparallel spin quasiparticles at 5% concentration. The concentration-dependent transport properties calculated from these pseudopotentials (which involve only one phenomenological parameter) are in good agreement with experiment at saturated vapor pressure (SVP), 10 atm, and 20 atm. Maxima in the thermal conductivity and spin diffusion are predicted to occur at concetrations somewhat less than 4%. Because the effective quasiparticle interactions are somewhat more repulsive than those previously proposed, we find the transition of the3He quasiparticles to the superfluid state takes place at significantly lower temperatures than many previous estimates; our predicted maximum superfluid transition temperature is 2×10–8 K (for a 0.6% mixture at 20 atm).  相似文献   

13.
We generalize the dynamical-mean field theory (DMFT) by including into the DMFT equations dependence on the correlation length of the pseudogap fluctuations via the additional (momentum dependent) self-energy Σk. This self-energy describes nonlocal dynamical correlations induced by short-ranged collective SDW-like antiferromagnetic spin (or CDW-like charge) fluctuations. At high enough temperatures, these fluctuations can be viewed as a quenched Gaussian random field with finite correlation length. This generalized DMFT + Σk approach is used for the numerical solution of the weakly doped one-band Hubbard model with repulsive Coulomb interaction on a square lattice with nearest and next nearest neighbor hopping. The effective single impurity problem is solved by using a numerical renormalization group (NRG). Both types of strongly correlated metals, namely, (i) doped Mott insulator and (ii) the case of the bandwidth W ? U (U-value of local Coulomb interaction) are considered. By calculating profiles of the spectral densities for different parameters of the model, we demonstrate the qualitative picture of Fermi surface destruction and formation of Fermi arcs due to pseudogap fluctuations in qualitative agreement with the ARPES experiments. Blurring of the Fermi surface is enhanced with the growth of the Coulomb interaction.  相似文献   

14.
We study properties of a gluon plasma above the critical temperature Tc in a generalized quasiparticle approach with a Lorentz spectral function. The model parameters are determined by a fit of the entropy s to lattice QCD data. The effective degrees of freedom are found to be rather heavy and of a sizable width. With the spectral width being closely related to the interaction rate, we find a large effective cross section, which is comparable to the typical distance squared of the quasiparticles. This suggests that the system should be viewed as a liquid as also indicated by an estimate of the plasma parameter Gamma. Furthermore, within the quasiparticle approach we find a very low viscosity to entropy ratio, eta/s approximately 0.2 for T > 1.05 Tc, supporting the recent conjecture of an almost ideal quark-gluon liquid seen at RHIC.  相似文献   

15.
By means of a strong-coupling approach, developed in previous works, we study the quasiparticle properties in an extended Hubbard model in presence of critical charge fluctuations near a stripe-quantum critical-point. We show that the quasiparticle dispersion has a kink along the diagonal Brillouin zone at the energy of the order 50 meV, for realistic values of the parameters. The energy and momentum distribution curves (EDC, MDC) along the diagonal are also analyzed. The results for the EDC derived quasiparticle width reveals an anomalous drop in the low-energy scattering rate at the same energy of the kink. This drop corresponds to a new energy scale in the system that reflects the interaction between the quasiparticles and the critical charge fluctuations. The results offer a possible interpretation of the ARPES and photoemission experiments on Bi2212.Received: 17 November 2003, Published online: 19 February 2004PACS: 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems  相似文献   

16.
We study frequency- and wave-vector dependent charge correlations in weakly doped antiferromagnets using Mori-Zwanzig projection technique. The system is described by the two-dimensional t-J model. The ground state is expressed within a cumulant formalism which has been successfully applied to study magnetic properties of the weakly doped system. Within this approach the ground state contains independent spin-bag quasiparticles (magnetic polarons). We present results for the charge-density response function and for the optical conductivity at zero temperature for different values of t / J. They agree well with numerical results calculated by exact diagonalization techniques. The density response function for intermediate and large momenta shows a broad continuum on energy scales of order of several t whereas the optical conductivity for is dominated by low energy excitations (at 1.5-2J). We show that these weak-doping properties can be well understood by transitions between excited states of spin-bag quasiparticles. Received: 10 July 1997 / Revised: 19 March 1998 / Accepted: 3 April 1998  相似文献   

17.
We investigate the Mott transition using a cluster extension of dynamical mean field theory (DMFT). In the absence of frustration we find no evidence for a finite temperature Mott transition. Instead, in a frustrated model, we observe signatures of a finite temperature Mott critical point in agreement with experimental studies of kappa organics and with single-site DMFT. As the Mott transition is approached, a clear momentum dependence of the electron lifetime develops on the Fermi surface with the formation of cold regions along the diagonal direction of the Brillouin zone. Furthermore, the variation of the effective mass is no longer equal to the inverse of the quasiparticle residue, as in DMFT, and is reduced approaching the Mott transition.  相似文献   

18.
We investigate the scanning tunneling spectroscopy (STS) of a two-orbital Anderson impurity adsorbed on a metallic surface by using the numerical renormalization group (NRG) method. The density of state of magnetic impurity and the local conduction electron are calculated. We obtain the Fano resonance line shape in the STM conductance at zero temperature. For the impurity atom with antiferromagnetic inter-orbital exchange interaction and a spin singlet ground state, we show that a dip in the STM spectra around zero bias voltage regime and side peaks of spin excitation can be observed. The spin excitation energy is proportional to the exchange interaction strength. As the exchange interaction is ferromagnetic, the underscreened Kondo effect dominates the low energy properties of this system, and it gives rise to drastically different STM spectra as compared with the spin singlet case.  相似文献   

19.
This article investigates the equilibrium states of antiferromagnetic itinerant-electron systems in the Hartree-Fock approximation. As a result, the spin susceptibilities are determined in the random phase approximation. The lowlying collective excitations are then obtained by finding the poles of these susceptibilities.

We start by giving a brief review of the Hartree-Fock procedure and by indicating how the susceptibilities are obtained. The density matrix approach, where the ground state is interpreted as that minimizing the energy, is used throughout. Using an effective Coulomb interaction of the Hubbard type we consider two distinct systems: a one-band system with an incommensurate spin density wave in its ground state, and a many-band simply commensurate model for f.c.c. manganese.

The first of these is such that the band structure and resulting susceptibilities can be obtained explicitly. The spin-wave energies and wave-vectors are found by a careful, small energy and momentum transfer, expansion of these susceptibilities for the case of a parabolic band. The spin-wave damping, which is shown to arise from spin-wave decay into quasiparticle quasihole pairs, is also obtained for this band structure.

For the case of f.c.c. manganese the antiferromagnetic bands are obtained from a realistic 9-band paramagnetic model by using a many-band generalization of the Hubbard interaction. The enhanced spin susceptibilities are calculated, using the tetrahedral Brillouin zone integration method, and are presented along with their associated collective excitations. The results obtained are discussed with particular reference to the many-band effects. These effects are shown to be very much dependent on the particular form of interaction used.  相似文献   

20.
We find a novel channel of quasiparticle reflection from the simplest two-sublattice antiferromagnet (AF) on a bipartite lattice. Low-energy quasiparticles in a normal metal (N) experience spin-dependent retroreflection at AF/N interfaces. As a combined effect of antiferromagnetic and Andreev reflections, subgap Andreev states arise at an AF/superconductor (SC) interface. When the antiferromagnetic reflection dominates the specular one, Andreev bound states have almost zero energy on AF/s-wave superconductor (sSC) interfaces, whereas there are no low-energy subgap states on AF/d-wave superconductor (dSC) boundaries. For an sSC/AF/sSC junction, the bound states are found to split, due to the finite width of the AF interlayer, and carry the supercurrent. The theory developed in the present Letter is based on a novel quasiclassical approach, which applies to interfaces involving itinerant antiferromagnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号