首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the first results obtained on monobarium gallate thin films grown on silicon and platinum coated substrates by pulsed laser deposition. The influence of oxygen background pressure and substrate (or post-annealing) temperature on the film properties was studied. The films were characterized by XRD, RHEED, AFM, photoelectron and electrical impedance spectroscopy. The structure analysis showed that the films crystallized into a hexagonal phase, most probably into (metastable) α-BaGa2O4. Depending on deposition conditions, films with different (from nearly epitaxial to polycrystalline) textures were obtained.  相似文献   

2.
The three thermo-optic coefficients of the biaxial laser host KLu(WO4)2 are measured at 633 nm by a deflection method. Their values at 300 K amount to n g / T=−7.4×10−6 K−1; n m / T=−1.6×10−6 K−1 and n p / T=−10.8×10−6 K−1. Nearly athermal propagation directions are found for polarizations along the N m and N p dielectric axes.  相似文献   

3.
Promising applications of TiO2 nanostructures include the development of optical devices, sensors, photocatalysts and self-cleaning coatings. In view of their importance, research on the synthesis of nanosized TiO2 is a particularly active field. In this work we report on the investigation of the effect of laser irradiation wavelength (Q-switched Nd:YAG laser at 532, 355 and 266 nm), the temperature of the substrate and the atmosphere of deposition (vacuum, Ar and O2) that are suitable for obtaining nanostructured deposits from TiO2 sintered targets. The ablation plume emission is characterized with spectral and temporal resolution by optical emission spectroscopy (OES), while the surface morphology and chemical states of the material deposited on a Si (100) substrate are examined by environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) and by X-ray photoelectron spectroscopy (XPS), respectively. Deposits with nanostructured morphology with grain size down to 40 nm and keeping the stoichiometry of the targets were obtained at high temperature, while the highest concentration of particulates was observed at the longest laser wavelength of 532 nm on a substrate heated up to 650°C. In situ characterization of the ablation plume, carried out by OES, indicated the presence of emissions assigned to Ti I, Ti II and O I.  相似文献   

4.
Ferroelectric and dielectric properties of bilayered ferroelectric thin films, SrBi4Ti4O15 grown on Bi4Ti3O12, were investigated. The thin films were annealed at 700°C under oxygen atmosphere. The bilayered thin films were prepared on a Pt(111)/Ti/SiO2/Si substrate by a chemical solution deposition method. The dielectric constant and dielectric loss of the bilayered thin films were 645 and 0.09, respectively, at 100 kHz. The value of remnant polarization (2P r) measured from the ferroelectric thin film capacitors was 60.5 μC/cm2 at electric field of 200 kV/cm. The remnant polarization was reduced by 22% of the initial value after 1010 switching cycles. The results showed that the ferroelectric and dielectric properties of the SrBi4Ti4O15 on Bi4Ti3O12 ferroelectric thin films were better than those of the SrBi4Ti4O15 grown on a Pt-coated Si substrate suggesting that the improved properties may be due to the different nucleation and growth kinetics of SrBi4Ti4O15 on the c-axis-oriented Bi4Ti3O12 layer or on the Pt-coated Si substrate.  相似文献   

5.
We have demonstrated pulsed laser deposition of Nd-doped gadolinium gallium garnet on Y3Al5O12 by the simultaneous ablation of two separate targets of Nd:Gd3Ga5O12 (GGG) and Ga2O3. Such an approach is of interest as a method of achieving stoichiometry control over films whilst the growth parameters are kept constant and optimal for high quality crystal growth. We show here how the stoichiometry and resultant lattice parameter of a film can be controlled by changing the relative deposition rates from the two targets. Films have been grown with enough extra Ga to compensate for the deficiency that commonly occurs when depositing only from a GGG target. We have also grown crystalline GGG films with an enriched Ga concentration, and this unconventional approach to film stoichiometry control may have potential applications in the fabrication of films with advanced compositionally graded structures.  相似文献   

6.
The structure and photoluminescence properties of TiO2-coated ZnS nanowires were investigated. ZnS nanowires were synthesized by thermal evaporation of ZnS powder and then coated with TiO2 by using the metal organic chemical vapor deposition (MOCVD) technique. We performed scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and photoluminescence (PL) spectroscopy to characterize the as-synthesized and TiO2-coated ZnS nanowires. TEM and XRD analyses revealed that the ZnS core and the TiO2 coatings had crystalline zinc blende and crystalline anatase structures, respectively. PL measurement at room temperature showed that the as-synthesized ZnS nanowires had two emissions: a blue emission centered in the range from 430 to 440 nm and a green emission at around 515 nm. The green emission was found to be dominant in the ZnS nanowires coated with TiO2 by MOCVD at 350°C for one or more hours, while the blue emission was dominant in the as-synthesized ZnS nanowires. Also the mechanisms of the emissions were discussed.  相似文献   

7.
Lithium terbium molybdate (LiTb(MoO4)2) single crystal was grown by the Czochralski method. The lattice parameters of the crystal were determined by X-ray diffraction analysis. The absorption coefficient and the Faraday rotation spectrum (B=1.07 T) were investigated at wavelengths of 400–1500 nm at room temperature. Verdet constants of LiTb(MoO4)2 crystal at 532-, 633- and 1064-nm wavelengths were measured by the extinction method. The results show that LiTb(MoO4)2 crystal has a larger magneto-optical figure of merit than that of terbium gallium garnet at wavelengths of 600–1500 nm.  相似文献   

8.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

9.
In a rare-earth antiferromagnet, two neighboring magnetic ions order spontaneously in opposite directions below the Néel temperature. Especially when it is placed in an external magnetic field, the two magnetic ions react to the field in different ways, so that they usually have different magnitudes and orientations below the magnetic transition temperature. Therefore, to describe the magnetic structure of an antiferromagnet, the single-ion ferromagnetic-like model is inadequate. To solve this problem, a two-ion model for rare-earth antiferromagnets is proposed and used in this work to investigate the magnetic properties of DyNi2B2C. The magnetic susceptibility curves obtained with this model show good agreements with experimental data.  相似文献   

10.
A Nd:YAG laser operating in second harmonic (532 nm), 3 ns pulse duration, 150 mJ pulse energy, and 10 Hz repetition rate, is employed to irradiate Al2O3 target placed in high vacuum. The produced plasma is investigated by an ion collector used in time-of-flight configuration and by a mass quadrupole spectrometer, in order to determine the equivalent plasma temperature and the atomic and molecular composition. Pulsed laser deposition technique has been used to produce thin films on different substrates placed close to the target. Different surface analyses, such as energy dispersive X-ray fluorescence (EDXRF), X-ray photoelectron spectroscopy (XPS) and surface profilometry are employed to characterize the produced films. Measurements of ablation yield, plasma equivalent temperature, acceleration voltage and characterization of grown thin films are presented and discussed.  相似文献   

11.
Ba0.6Sr0.4TiO3 (BST) bulk ceramic synthesized by solid state reaction was used as target for thin films grown by pulsed laser deposition (PLD) and radiofrequency beam assisted PLD (RF-PLD). The X-ray diffraction patterns indicate that the films exhibit a polycrystalline cubic structure with a distorted unit cell. Scanning Electron Microscopy investigations showed a columnar microstructure with size of spherical grains up to 150 nm. The capacitance–voltage (C–V) characteristics of the BST films were performed by applying a DC voltage up to 5 V. A value of 280 for dielectric constant and 12.5% electrical tunability of the BST capacitor have been measured at room temperature.  相似文献   

12.
We report theoretical calculations of the band structure and density of states for orthorhombic LiGaS2 (LGS) and LiGaSe2 (LGSe). These calculations are based on the full potential linear augmented plane wave (FP-LAPW) method within a framework of density functional theory. Our calculations show that these crystals have similar band structures. The valence band maximum (VBM) and the conduction band minimum (CBM) are located at Γ, resulting in a direct energy band gap. The VBM is dominated by S/Se-p and Li-p states, while the CBM is dominated by Ga-s, S/Se-p and small contributions of Li-p and Ga-p. From the partial density of states we find that Li-p hybridizes with Li-s below the Fermi energy (E F), while Li-s/p hybridizes with Ga-p below and above E F. Also, we note that S/Se-p hybridizes with Ga-s below and above E F.  相似文献   

13.
We present selected recent results of multi-hadron correlation measurements in azimuth and pseudorapidity at intermediate and high p T in Au+Au collisions at , from the STAR experiment at RHIC. At intermediate p T , measurements are presented that attempt to determine the origin of the associated near-side (small Δφ) yield at large pseudo-rapidity difference Δη that is found to be present in heavy ion collisions. In addition, results are reported on new multi-hadron correlation measures at high-p T that use di-hadron triggers and multi-hadron cluster triggers with the goal to constrain the underlying jet kinematics better than in the existing measurements of inclusive spectra and di-hadron correlations.  相似文献   

14.
The intensity dependence of the photorefractive response of Sn2P2S6 is studied for the Kr+-laser wavelength of 647 nm and pump-beam intensities of up to 10 W/cm2. A considerable enhancement of the two-beam coupling gain factor with increasing intensity at a grating spacing of ≃1 μm is attributed to a light-induced increase of the effective trap density. The large gain reached at high intensities is applied for the build up of a double phase conjugate mirror with a sub-millisecond switch-on time.  相似文献   

15.
We have investigated the structural and dehydriding properties of Ca(BH4)2. It was found that Ca(BH4)2 undergoes a structural phase transformation from an orthorhombic low-temperature (LT) modification into a tetragonal high-temperature (HT) modification between 433 K and 523 K. The amount of hydrogen desorbed from Ca(BH4)2 during the pressure–composition (pc) isotherm measurement was 5.9 mass%. This hydrogen desorption is caused by the partial dehydrogenation of Ca(BH4)2 accompanied by the formation of CaH2 and orthorhombic intermediate phases.  相似文献   

16.
The dielectric properties of Sr0.75Ba0.25Nb2O6 relaxor ferroelectric thin films were carefully analyzed. In contrast to bulk samples which present three distinct dielectric relaxation phenomena Sr0.75Ba0.25Nb2O6 thin films present only two of them. The suppression of the third anomaly can be mainly attributed to the narrow grain size distribution of nanograins and weak tensile strains imposed to the film from the substrate. The whole set of results point to the interpretation of a dielectric response characteristic of mesoscopic structure, which is composed of clusters and nanodomains.  相似文献   

17.
The structural transformation of MoO3 nanobelts into MoS2 nanotubes using a simple sulfur source has been reported. This transformation has been extensively investigated using electron microscopic and spectroscopic techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), and energy-dispersive X-ray analysis (SEM-EDAX and TEM-EDX). The method described in this report will serve as a generic route for the transformation of other oxide nanostructures into the chalcogenide nanostructures.  相似文献   

18.
The tunneling magnetoresistance of Co70Fe30/AlO x /Co70Fe30 magnetic tunnel junctions with epitaxial bottom electrode annealed at different temperatures was studied. The TMR was significantly enhanced when the bottom electrodes were annealed at 300°C and above. The interface roughness, barrier width and height are almost identical within the experimental uncertainty. However, high resolution reciprocal space mapping studies showed that the lattice distortion of the epitaxial bottom electrodes from body centered cubic to body centered tetragonal had the same trend as the TMR. The tetragonal lattice distortion is attributed to be the dominant factor for this spin polarization enhancement.  相似文献   

19.
Matrix-Assisted-Pulsed-Laser-Evaporation (MAPLE) has emerged as a very promising technique for the deposition of polymers and biopolymers in intact and functional form. However, our understanding of the mechanism of the procedure is still limited. Here, we examine laser-induced (248 nm) desorption from condensed CHCl3 solid, which has been employed as a potential matrix in MAPLE. We find that the absorption of the condensed halocarbon increases significantly with successive laser pulses, as a result of the formation and accumulation of strongly absorbing products. This results in a significant increase of the ejection efficiency in the irradiation with successive laser pulses. Thus, in studies employing multi-pulse irradiation protocols, the attained laser-induced temperatures are considerably higher than what is estimated on the basis of the absorption coefficient of CHCl3. Thus, contrary to previous suggestions, ablation of CHCl3 frozen solid at 248 nm may be due to explosive boiling. A number of additional implications are also discussed.  相似文献   

20.
CaCu3Ti4O12 (CCTO) thin films were successfully prepared on LaAlO3 substrates by pulsed laser deposition technique. We measured the nonlinear optical susceptibility of the thin films using Z-scan method at a wavelength of 532 nm with pulse durations of 25 ps and 7 ns. The large values of the third-order nonlinear optical susceptibility, χ (3), of the CCTO film were obtained to be 2.79×10−8 esu and 3.30×10−6 esu in picosecond and nanosecond time regimes, respectively, which are among the best results of some representative nonlinear optical materials. The origin of optical nonlinearity of CCTO films was discussed. The results indicate that the CCTO films on LaAlO3 substrates are promising candidate materials for applications in nonlinear optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号