首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper is concerned with the dynamics of water around a small globular protein. Dipolar second-rank relaxation time and diffusion properties of surface water were computed by extensive molecular dynamics simulations of lysozyme in water which lasted a total of 28 ns. Our results indicate that the rotational relaxation of water in the vicinity of lysozyme is 3-7 times slower than that in the bulk depending on how the hydration shell is defined in the calculation. We have also verified that the dynamics of water translational diffusion in the vicinity of lysozyme have retardations similar to rotational relaxation. This is a common assumption in nuclear magnetic relaxation dispersion (NMRD) studies to derive residence times. In contrast to bulk water dynamics, surface water is in a dispersive diffusion regime or subdiffusion. Very good agreement of dipolar second-rank relaxation time with NMRD estimates is obtained by using appropriate dimensions of the hydration shell. Although our computed second-rank dipolar retardations are independent of the water model, SPC/E describes more realistically the time scale of the water dynamics around lysozyme than does TIP3P.  相似文献   

2.
Dielectric relaxation of aqueous solutions of micelles, proteins, and many complex systems shows an anomalous dispersion at frequencies intermediate between those corresponding to the rotational motion of bulk water and that of the organized assembly or macromolecule. The precise origin of this anomalous dispersion is not well-understood. In this work we employ large scale atomistic molecular dynamics simulations to investigate the dielectric relaxation (DR) of water molecules in an aqueous micellar solution of cesium pentadecafluorooctanoate. The simulations clearly show the presence of a slow component in the moment-moment time correlation function [PhiMW(t)] of water molecules, with a time constant of about 40 ps, in contrast to only 9 ps for bulk water. Interestingly, the orientational time correlation function [Cmu(t)] of individual water molecules at the surface exhibits a component with a time constant of about 19 ps. We show that these two time constants can be related by the well-known micro-macrorelations of statistical mechanics. In addition, the reorientation of surface water molecules exhibits a very slow component that decays with a time constant of about 500 ps. An analysis of hydrogen bond lifetime and of the rotational relaxation in the coordinate frame fixed on the micellar body seems to suggest that the 500 ps component owes its origin to the existence of an extended hydrogen bond network of water molecules at the surface. However, this ultraslow component is not found in the total moment-moment time correlation function of water molecules in the solution. The slow DR of hydration water is found to be well correlated with the slow solvation dynamics of cesium ions at the water-micelle interface.  相似文献   

3.
We compute the entropy and transport properties of water in the hydration layer of dipalmitoylphosphatidylcholine bilayer by using a recently developed theoretical scheme [two-phase thermodynamic model, termed as 2PT method; S.-T. Lin et al., J. Chem. Phys. 119, 11792 (2003)] based on the translational and rotational velocity autocorrelation functions and their power spectra. The weights of translational and rotational power spectra shift from higher to lower frequency as one goes from the bilayer interface to the bulk. Water molecules near the bilayer head groups have substantially lower entropy (48.36 J/mol/K) than water molecules in the intermediate region (51.36 J/mol/K), which have again lower entropy than the molecules (60.52 J/mol/K) in bulk. Thus, the entropic contribution to the free energy change (TΔS) of transferring an interface water molecule to the bulk is 3.65 kJ/mol and of transferring intermediate water to the bulk is 2.75 kJ/mol at 300 K, which is to be compared with 6.03 kJ/mol for melting of ice at 273 K. The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface. This behavior is supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water. The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules.  相似文献   

4.
The dynamic behavior of water within two types of ionomer membranes, Nafion and sulfonated polyimide, has been investigated by field-cycling nuclear magnetic relaxation. This technique, applied to materials prepared at different hydration levels, allows the proton motion on a time scale of microseconds to be probed. The NMR longitudinal relaxation rate R(1) measured over three decades of Larmor angular frequencies omega is particularly sensitive to the host-water interactions and thus well-suited to study fluid dynamics in restricted geometries. In the polyimide membranes, we have observed a strong dispersion of R(1)(omega) following closely a 1/square root omega law in a low-frequency range (correlation times from 0.1 to 10 micros). This is indicative of a strong interaction of water with "interfacial" hydrophilic groups of the polymeric matrix (wetting situation). Variations of the relaxation rates with water uptake reveal a two-step hydration process: solvation and formation of disconnected aqueous clusters near polar groups, followed by the formation of a continuous hydrogen bond network. On the contrary, in the Nafion we observed weak variations of R(1)(omega) at low frequencies. This is typical of a nonwetting behavior. At early hydration stages, R(1)(omega) evolves logarithmically, suggesting a confined bidimensional diffusion of protons in the microsecond time range. Such an evolution is lost at higher swelling where a plateau related to three-dimensional diffusion is observed.  相似文献   

5.
We have performed a quasielastic neutron-scattering experiment on backscattering spectrometer with sub-mueV resolution to investigate the slow dynamics of surface water in zirconium oxide using the sample studied previously with a time-of-flight neutron spectrometer [E. Mamontov, J. Chem. Phys. 121, 9087 (2004)]. The backscattering measurements in the temperature range of 240-300 K have revealed a translational dynamics slower by another order of magnitude compared to the translational dynamics of the outer hydration layer observed in the time-of-flight experiment. The relaxation function of this slow motion is described by a stretched exponential with the stretch factors between 0.8 and 0.9, indicating a distribution of the relaxation times. The temperature dependence of the average residence time is non-Arrhenius, suggesting that the translational motion studied in this work is more complex than surface jump diffusion previously observed for the molecules of the outer hydration layer. The observed slow dynamics is ascribed to the molecules of the inner hydration layer that form more hydrogen bonds compared to the molecules of the outer hydration layer. Despite being slower by two orders of magnitude, the translational motion of the molecules of the inner hydration layer may have more in common with bulk water compared to the outer hydration layer, the dynamics of which is slower than that of bulk water by just one order of magnitude.  相似文献   

6.
Biological processes often involve the surfaces of proteins, where the structural and dynamic properties of the aqueous solvent are modified. Information about the dynamics of protein hydration can be obtained by measuring the magnetic relaxation dispersion (MRD) of the water (2)H and (17)O nuclei or by recording the nuclear Overhauser effect (NOE) between water and protein protons. Here, we use the MRD method to study the hydration of the cyclic peptide oxytocin and the globular protein BPTI in deeply supercooled solutions. The results provide a detailed characterization of water dynamics in the hydration layer at the surface of these biomolecules. More than 95% of the water molecules in contact with the biomolecular surface are found to be no more than two-fold motionally retarded as compared to bulk water. In contrast to small nonpolar molecules, the retardation factor for BPTI showed little or no temperature dependence, suggesting that the exposed nonpolar residues do not induce clathrate-like hydrophobic hydration structures. New NOE data for oxytocin and published NOE data for BPTI were analyzed, and a mutually consistent interpretation of MRD and NOE results was achieved with the aid of a new theory of intermolecular dipolar relaxation that accounts explicitly for the dynamic perturbation at the biomolecular surface. The analysis indicates that water-protein NOEs are dominated by long-range dipolar couplings to bulk water, unless the monitored protein proton is near a partly or fully buried hydration site where the water molecule has a long residence time.  相似文献   

7.
A time-domain 1H nuclear magnetic resonance relaxometry method was elaborated for the rapid microstructural characterization of mozzarella cheese. For this purpose, there is a strong need to know how the experimentally determined T2 relaxation time distribution can be related to specific constituents in mozzarella. In this study, a detailed investigation is offered for fresh and aged low-moisture mozzarella cheese, often applied as a pizza cheese, by application of both a conventional Carr–Purcell–Meiboom–Gill (CPMG) sequence and a free-induction decay CPMG (FID-CPMG) sequence. The relaxation behavior was further elucidated by addition of deuterium oxide and by mild heat treatment of samples. The relaxation times of water protons in mozzarella were found to range from a few microseconds to some tens of milliseconds (in aged mozzarella) or to about hundred milliseconds (in fresh mozzarella). The upper limit of the T2 distribution can even be extended to the seconds range upon releasing water protons from the mozzarella matrix using a mild heat treatment or upon addition of deuterated water. Both stimuli also provided evidence for the absorption of water into the cheese matrix. The potential release and uptake of water demonstrated that mozzarella acts as a very dynamic system during production and storage. The detected differences in the behavior of the water fraction between fresh and aged low-moisture mozzarella might be utilized to study the influence of either production and/or storage conditions on the cheese ripening process.  相似文献   

8.
Gelatin, derived from the collagen triple helix, is the most widely used functional biopolymer and a prototype for studies of physical gels. Gelatin gels have also served as models for soft biological tissue in efforts to elucidate the molecular basis of the magnetic relaxation phenomena that govern magnetic resonance image contrast. Yet, the microstructure, hydration, and magnetic relaxation behavior of gelatin gels are not well understood. To address these issues, we report here the water 2H and 17O magnetic relaxation dispersion (MRD) profiles from gelatin gels over wide ranges of resonance frequency and pH. For the global analysis of this extensive data set, we use a generalized relaxation theory that remains valid for arbitrarily slow molecular dynamics. The strong pH dependence in the 2H profiles can be rationalized quantitatively as the result of exchange with bulk water of labile hydrogens in gelatin side chains. The global analysis of the MRD data yields hydrogen-exchange rate constants, acid dissociation constants, and orientational order parameters in agreement with independent structural, thermodynamic, and kinetic data. The MRD analysis reveals a highly mobile hydration layer at the surface of the gelatin triple helix and a small number of trapped water molecules with residence times on the order of 10(-8) s, presumably associated with structural defects and branch points in the gel. The MRD data also indicate that approximately 20% of the gelatin residues belong to flexible polypeptide chains, rather than to rigid triple-helical segments. By identifying the molecular species and motions responsible for the 2H and 17O dispersion profiles, this study takes a significant step toward a quantitative understanding of water relaxation in aqueous gels and biological tissue.  相似文献   

9.
Melittin, an amphipathic peptide from honeybee venom, consists of 26 amino acid residues and adopts different conformations from a random coil, to an alpha-helix, and to a self-assembled tetramer under certain aqueous environments. We report here our systematic studies of the hydration dynamics in these conformations using single intrinsic tryptophan (W19) as a molecular probe. With femtosecond resolution, we observed the solvation dynamics occurring in 0.62 and 14.7 ps in a random-coiled primary structure. The former represents bulklike water motion, and the latter reflects surface-type hydration dynamics of proteins. As a comparison, a model tripeptide (KWK) was also studied. At a membrane-water interface, melittin folds into a secondary alpha-helical structure, and the interfacial water motion was found to take as long as 114 ps, indicating a well-ordered water structure along the membrane surface. In high-salt aqueous solution, the dielectric screening and ionic solvation promote the hydrophobic core collapse in melittin aggregation and facilitate the tetramer formation. This self-assembled tertiary structure is also stabilized by the strong hydrophilic interactions of charged C-terminal residues and associated ions with water molecules in the two assembled regions. The hydration dynamics was observed to occur in 87 ps, significantly slower than typical water relaxation at protein surfaces but similar to water motion at membrane interfaces. Thus, the observed time scale of approximately 100 ps probably implies appropriate water mobility for mediating the formation of high-order structures of melittin in an alpha-helix and a self-assembled tetramer. These results elucidate the critical role of hydration dynamics in peptide conformational transitions and protein structural stability and integrity.  相似文献   

10.
A water molecule in the vicinity of a hydrophobic surface forms fewer hydrogen bonds than a bulk molecule because the surface restricts the space available for other water molecules necessary for its hydrogen-bonding. In this vicinity, the number of hydrogen bonds per water molecule depends on its distance to the surface. Considering the number of hydrogen bonds per bulk water molecule (available experimentally) as the only reference quantity, we propose an improved probabilistic approach to water hydrogen-bonding that allows one to obtain an analytic expression for this dependence. (The original version of this approach [Y. S. Djikaev and E. Ruckenstein, J. Chem. Phys. 130, 124713 (2009)] provides the number of hydrogen bonds per water molecule in the vicinity of a hydrophobic surface as an average over all possible locations and orientations of the molecule.) This function (the number of hydrogen bonds per water molecule versus its distance to a hydrophobic surface) can be used to develop analytic models for the effect of hydrogen-bonding on the hydration of hydrophobic particles and their solvent-mediated interaction. Presenting a model for the latter, we also examine the temperature effect on the solvent-mediated interaction of two parallel hydrophobic plates.  相似文献   

11.
Electrolytes and their dissociated ions are thought to form positive or negative hydration layers around them. In this study, we have developed a method to determine the volume and the dielectric relaxation property (relaxation frequency f c, dispersion intensity delta) of the water hydrating ions in salt solutions. The method consists of four steps: (1) By use of a high-resolution microwave dielectric spectroscopy technique, the dielectric spectra of sample salt solution and bulk water are measured in pair. (2) The dielectric spectrum of solutes (ions) with water layers for a given volume fraction varphi is then calculated from each pair of dielectric spectra of a sample salt solution and reference water according to the Hanai mixture theory. (3) Each spectrum of solutes with water layers at a given varphi is decomposed into a few Debye relaxation functions and the bulk water component. (4) The volume fraction varphi is operationally decreased from 0.5, and steps (2) and (3) are repeated at each varphi until the bulk water component vanished. Then the volume fraction of the hydrated solutes (ions) in solution is determined. The method was applied to NaF and NaCl solutions. As a result the different spectral intensity was nearly proportional to the salt concentration below 0.2 M in the frequency range of 3-26 GHz. The hydration number N h and the dielectric relaxation property of the hydration layer for each salt solution was successfully determined as ( f c1, delta 1, N h)= (18.7, 44.9, 27.9) for NaCl and ( f c1, delta 1, f c2, delta 2, N h) = (26.0, 6.70, 5.64, 19.2) for NaF.  相似文献   

12.
A set of commercial milk and Sicilian cheeses was analysed by a combination of fast field cycling (FFC) nuclear magnetic resonance (NMR) relaxometry and chemometrics. The NMR dispersion (NMRD) curves were successfully analysed with a mathematical model applied on Parmigiano–Reggiano (PR) cheese. Regression parameters were led back to the molecular components of cheeses (water trapped in casein micelles, proteins and fats) and milk samples (water belonging to hydration shells around dispersed colloidal particles of different sizes and bulk water). The application of chemometric analysis on relaxometric data enabled differentiating milk from cheeses and revealing differences within the two sample groups of either cheeses or milk samples. Marked differences among cheeses were evidenced by statistical analysis of the sole quadrupolar peaks parameters, suggesting that these contain information on the nature of the milk used during cheese production. Hence, combination of FFC NMR and chemometrics represents a powerful tool to investigate alterations in dairy products.  相似文献   

13.
Chain dynamics, probed by dielectric spectroscopy, provide a route to further understanding of the molecular interactions induced by hydration, degree of crosslinking, and microstructural changes occurring on swelling of biopolymers such as chitosan, which is becoming a focus for biomedical engineering and therapeutic delivery. The basis of the β‐wet relaxation peak is established as segmental chain relaxation between chitosan water bridges and related to its hysteresis induced by microstructural changes during wetting and dewetting cycles. Linear expansion probes the hysteresis arising from bridging water interactions during the hydration–dehydration paths which is also shown in the resultant ionic conductivity. β‐wet relaxation and ionic conductivity exhibit identical hysteresis behavior with both degrees of chemical crosslinking and water contents. X‐ray diffraction shows that the degree of crosslinking and hydration also influences the degree of disorder of the polymer chains changing both the crystalline phase fraction and lattice dimensions. These molecular interactions provide power law behavior between β‐wet relaxation dynamics and ionic mobility over five orders of magnitude for all degrees of chemical crosslinking and water bridging which is independent of the significant hysteresis in these properties indicative of scaling behavior within the noncrystalline gel phase. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
In this paper, we propose a new spectroscopic method to explore the behavior of molecules near polymeric molecular networks of water-containing soft materials such as hydrogels. We demonstrate the analysis of hydrogen bonding states of water in the vicinity of hydrogels (soft contact lenses). In this method, we apply force to hydrated contact lenses to deform them and to modulate the ratio between the signals from bulk and vicinal regions. We then collect spectra at different forces. Finally, we extracted the spectra of the vicinal region using the multivariate curve resolution-alternating least square (MCR-ALS) method. We report the hydration states depending on the chemical structures of hydrogels constituting the contact lenses.  相似文献   

15.
We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton.  相似文献   

16.
We report experimental and theoretical studies on water and protein dynamics following photoexcitation of apomyoglobin. Using site-directed mutation and with femtosecond resolution, we experimentally observed relaxation dynamics with a biphasic distribution of time scales, 5 and 87 ps, around the site Trp7. Theoretical studies using both linear response and direct nonequilibrium molecular dynamics (MD) calculations reproduced the biphasic behavior. Further constrained MD simulations with either frozen protein or frozen water revealed the molecular mechanism of slow hydration processes and elucidated the role of protein fluctuations. Observation of slow water dynamics in MD simulations requires protein flexibility, regardless of whether the slow Stokes shift component results from the water or protein contribution. The initial dynamics in a few picoseconds represents fast local motions such as reorientations and translations of hydrating water molecules, followed by slow relaxation involving strongly coupled water-protein motions. We observed a transition from one isomeric protein configuration to another after 10 ns during our 30 ns ground-state simulation. For one isomer, the surface hydration energy dominates the slow component of the total relaxation energy. For the other isomer, the slow component is dominated by protein interactions with the chromophore. In both cases, coupled water-protein motion is shown to be necessary for observation of the slow dynamics. Such biologically important water-protein motions occur on tens of picoseconds. One significant discrepancy exists between theory and experiment, the large inertial relaxation predicted by simulations but clearly absent in experiment. Further improvements required in the theoretical model are discussed.  相似文献   

17.
Results from microwave measurements of the dielectrical properties of aqueous pyrrolidinium trifluoroacetate solutions at maximum water dispersion frequencies (13–25 GHz) and temperatures of 288, 298, and 308 K are given. The static dielectrical constants, times, and activation parameters of the dielectrical relaxation of solutions are calculated. The enthalpy and time of dielectrical relaxation activation are increased by deceleration of the motion of water molecules in the hydrate shells of ions. The changes in dielectrical parameters are in this case minimal in a series of aqueous solutions of diallylammonium salts with cations of different structures and degrees of substitution. It is shown that pyrrolidinium ions are characterized by weak hydrophobic hydration.  相似文献   

18.
Large-scale protein conformational motions on nanosecond-microsecond time scales are important for many biological processes, but remain largely unexplored because of methodological limitations. NMR relaxation methods can access these time scales if protein tumbling is prevented, but the isotropy required for high-resolution solution NMR is then lost. However, if the immobilized protein molecules are randomly oriented, the water 2H and 17O spins relax as in a solution of freely tumbling protein molecules, with the crucial difference that they now sample motions on all time scales up to approximately 100 micros. In particular, the exchange rates of internal water molecules can be determined directly from the 2H or 17O magnetic relaxation dispersion (MRD) profile. This possibility opens up a new window for characterizing the motions of individual internal water molecules as well as the large-scale protein conformational fluctuations that govern the exchange rates of structural water molecules. We introduce and validate this new NMR method by presenting and analyzing an extensive set of 2H and 17O MRD data from cross-linked gels of two model proteins: bovine pancreatic trypsin inhibitor and ubiquitin. We determine residence times and order parameters of four internal water molecules in these proteins and show that they are quantitatively consistent with the information available from crystallography and solution MRD. We also show how slow motions of side-chains bearing labile hydrogens can be monitored by the same approach. Proteins of any size can be studied at physiological hydration levels with this method.  相似文献   

19.
Ion hydration is of pivotal importance for many fundamental processes. Various spectroscopic methods are used to study the retardation of the hydration bond dynamics in the vicinity of anions and cations. Here we introduce THz‐FTIR spectroscopy as a powerful method to answer the open questions. We show through dissection of THz spectra that we can pinpoint characteristic absorption features that can be attributed to the rattling modes of strongly hydrating ions within their hydration cages as well as vibrationally induced charge fluctuations in the case of weakly hydrating ions. Further analysis yields information on anion–cation cooperativity, the size of the dynamic hydration shell, as well as the lifetimes of these collective ion‐hydration water modes and their connecting thermal bath states. Our study provides evidence for a non‐additive behavior, thus questioning the simplified Hofmeister model. THz spectroscopy enables ion pairing to be observed and quantified at a high salt concentration.  相似文献   

20.
Frequency‐dependent NMR relaxation studies have been carried out on water (polar) and cyclohexane (nonpolar) molecules confined inside porous ceramics containing variable amounts of iron oxide (III). The porous ceramics were prepared by compression of powders mixed with iron oxide followed by thermal treatment. The pore size distribution was estimated using a technique based on diffusion in internal fields that exposed a narrow distribution of macropore sizes with an average pore dimension independent of iron oxide content. The relaxation dispersion curves were obtained at room temperature using a fast field cycling NMR instrument. They display an increase of the relaxation rate proportional to the iron oxide concentration. This behavior is more prominent at low Larmor frequencies and is independent of the polar character of the confined molecules. The results reported here can be fitted well with a relaxation model considering exchange between molecules in the close vicinity of the paramagnetic centers located in the surface and bulk‐like molecules inside the pores. This model allows the extraction of the transverse diffusional correlation time that can be related to the polar character of the confined molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号