首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the reactions between cobalt-oxides and water molecules using photoelectron spectroscopy and density functional calculations. It has been confirmed by both experimental observation and theoretical calculations that dihydroxide anions, Co(m)(OH)(2)(-) (m = 1-3), were formed when Co(m)O(-) clusters interact with the first water molecule. Addition of more water molecules produced solvated dihydroxide anions, Co(m)(OH)(2)(H(2)O)(n)(-) (m = 1-3). Hydrated dihydroxide anions, Co(m)(OH)(2)(H(2)O)(n)(-), are more stable than their corresponding hydrated metal-oxide anions, Co(m)O(H(2)O)(n+1)(-).  相似文献   

2.
Presented here are two isostructural uranyl coordination polymers [UO2(EDO)(H2O)]·H2O (1) and [UO2(BDO)(H2O)]·2H2O (2) (EDO2-=ethylene-1,2-dioxamate; BDO2-=butylene-1,2-dioxamate) with identical stepwise zigzag chain structure and distinct interchain hydrogen bonding interaction, prepared from hydrothermal reaction of DEEDO or DEBDO (DEEDO=diethyl ethylene-1,2-dioxamate; DEBDO=diethyl butylene-1,2-dioxamate) with uranyl ions. The monomeric uranyl-based fluorescence emissions of compounds 1 and 2 are red-shifted by about 6 and 5 nm respectively, compared to that of uranyl nitrate hexahydrate. Compound 1 has stronger emission than compound 2, but both their emissions exhibit triple-exponential decay. The photophysics of uranyl oxalate trihydrate was also investigated for comparison. The selective crystallization of compound 1 in alkaline solution was applied to the sequestration of uranyl ions, showing a kinetic preference.  相似文献   

3.
Karimova OV  Burns PC 《Inorganic chemistry》2007,46(24):10108-10113
Three uranyl perrhenates have been synthesized, and their structures have been determined. (UO2)2(ReO4)4(H2O)3 (1) is triclinic, space group P, a=5.2771(7), b=13.100(2), c=15.476(2) A, alpha=107.180(2), beta=99.131(3), gamma=94.114(2) degrees, V=1001.12 A3, Z=2. [(UO2)4(ReO4)2O(OH)4(H2O)7](H2O)5 (2) is also triclinic, space group P, a=7.884(1), b=11.443(2), c=16.976(2) A, alpha=83.195(4), beta=89.387(4), gamma=85.289(4) degrees, V=1515.70 A3, Z=2. Na(UO2)(ReO4)3(H2O)2 (3) is monoclinic, space group C2/m, a=12.311(3), b=22.651(6), c=5.490(1) A, beta=109.366(6) degrees, V=1444.24 A3, Z=4. These compounds are the first structurally characterized uranyl perrhenates that do not contain organic ligands. In each structure, perrhenate groups coordinate uranyl ions at the equatorial vertices of pentagonal bipyramids. 1 contains complex chains of uranyl pentagonal bipyramids that are bridged by vertex sharing with perrhenate groups. The structural units in 2 and 3 consist of three novel finite clusters that include the coordination of uranyl ions with perrhenate. In general, weakly coordinating ligands such as perchlorate, perrhenate, and pertechnetate are assumed not to form stable complexes with uranyl in solutions or solids. The current findings, together with other recently reported studies, indicate each of these ligands can coordinate uranyl, and novel structure types result.  相似文献   

4.
A uranyl peroxide, Na5[(UO2)3(O2)4(OH)3](H2O)13, with an open sheet of uranyl polyhedra has been synthesized under ambient conditions and structurally characterized. The structure (orthorombic, Cmca, a = 23.632(1) A, b = 15.886(1) A, c = 13.952(1) A, V = 5237.7 A(3), and Z = 8) consists of sheets composed of two symmetrically unique uranyl (UO2)2+ ions that are coordinated equatorially by two peroxide groups and two OH(-) groups, forming distorted uranyl hexagonal bipyramids of composition (UO2)(O2)2(OH)2(4-). The uranyl bipyramids are connected into sheets with openings with dimensions 13.7 A along [010] and 15.9 A along [100]. The shortest dimension of the cavity is 8.08 A. Sheets of two-dimensionally polymerized uranyl polyhedra are the most common structural type of inorganic uranyl phases; however, such an open topology has never been observed.  相似文献   

5.
The new uranyl molybdate Ag(6)[(UO(2))(3)O(MoO(4))(5)] (1) with an unprecedented uranyl molybdate sheet has been synthesized at 650 degrees C. The structure (monoclinic, C2/c, a = 16.4508(14) A, b = 11.3236(14) A, c = 12.4718(13) A, beta = 100.014(4)(o), V = 2337.4(4) A(3), Z = 4) contains [(UO(2))(3)O(MoO(4))(5)] sheets composed of triuranyl [(UO(2))(3)O] clusters that are connected by MoO(4) tetrahedra. The topology of the uranyl molybdate sheet in 1 represents a major departure from sheets observed in other uranyl compounds. Of the approximately 120 known inorganic uranyl compounds containing sheets of polyhedra, 1 is the only structure that contains trimers of uranyl pentagonal bipyramids that are connected only by the sharing of vertexes with other polyhedra. The sheets are parallel to (001) and are linked by Ag cations.  相似文献   

6.
1 INTRODUCTION Tri-butyl phosphate (TBP) has been widely used as the extraction reagent in U-Th fuel to separate uranium from thorium. But di-butyl phos- phate (DBP) and butyl phosphate (MBP), the radio- lytic products of TBP, exhibit some coordinated ability to the fission elements, such as Zr and Nb. The substitutes for TBP have being studied for several decades[1~4]. The physical and chemical properties of amides are similar to those of TBP and they selectively extract U(Ⅵ…  相似文献   

7.
An uranyl isophthalate has been hydrothermally synthesized at 200 °C for 24 h, from a mixture of uranyl nitrate, isophthalic acid, and hydrazine in water. It was characterized by single-crystal analysis [triclinic, P ?1, a = 7.3934(3) ?, b = 13.3296(5) ?, c = 15.4432(5) ?, α = 111.865(2)°, β = 90.637(2)°, γ = 104.867(2)°, V = 1355.49(9) ?(3)] and different spectroscopic techniques (Raman, IR-ATR, UV-visible). The 3D structure of the phase (UO(2))(8)O(2)(OH)(4)(H(2)O)(4)(1,3-bdc)(4)·4H(2)O (1,3-bdc = 1,3-benzenedicarboxylate) reveals octanuclear units based on the association of 7-fold coordinated uranyl cations (pentagonal bipyramid) involving a rare case of cation-cation interaction together with edge-sharing polyhedral connection mode. UV-visible absorption spectroscopy confirmed that uranium was only involved in the structure as uranyl forms (excluding the presence of tetravalent or pentavalent uranium). Additionally, μ-Raman and IR-ATR experiments allowed assigning four uranyl contributions to the four types of uranyl entities in the structure, in agreement with the XRD analysis.  相似文献   

8.
The new uranyl phosphate [(UO2)3(PO4)O(OH)(H2O)2](H2O) (1) with an unprecedented framework structure has been synthesized at 150 and 185 degrees C. The structure (tetragonal, P4(2)/mbc, a = 14.015(1) A, c = 13.083(2) A, V = 2575.6(4) A(3), Z = 8) contains uranyl phosphate chains composed of uranyl pentagonal and hexagonal bipyramids and phosphate tetrahedra linked by sharing of polyhedral edges. The uranyl phosphate chains are aligned both along [100] and [010] and are linked into a novel framework structure involving channels along [001]. Topologically identical chains occur linked into sheets in more than a dozen uranyl phosphate minerals, but these chains have never been observed in opposing orientations and linked into a framework as in 1.  相似文献   

9.
Wang X  Andrews L 《Inorganic chemistry》2005,44(24):9076-9083
Laser-ablated Cu, Ag, and Au atoms react with H2O2 and with H2 + O2 molecules during condensation in excess argon to give four new IR absorptions in each system (O-H stretch, M-O-H bend, O-M-O stretch, and M-O-H deformation modes) that are due to the coinage metal M(OH)2 dihydroxide molecules. Isotopic substitution (D2O2, 18O2, 16O18O, D2, and HD) and comparison with frequencies computed by DFT verify these assignments. The calculations converge to 2B(g) ground electronic state structures with C2h symmetry, 111-117 degrees M-O-H bond angles, and substantial covalent character for these new metal dihydroxide molecules, particularly for Au(OH)2. This is probably due to the high electron affinity of gold owing to the effect of relativity.  相似文献   

10.
Kubatko KA  Burns PC 《Inorganic chemistry》2006,45(25):10277-10281
Two novel U6+ compounds, Sr5(UO2)20(UO6)2O16(OH)6(H2O)6 (SrFm) and Cs(UO2)9U3O16(OH)5 (CsFm), have been synthesized by mild hydrothermal reactions. The structures of SrFm (orthorhombic, C2221, a = 11.668(1), b = 21.065 (3), c = 13.273 A, V = 3532.5(1) A3, Z = 2) and CsFm (trigonal, R3c, a = 11.395(2), c = 43.722(7) A, V = 4916.7(1) A3, Z = 6) are rare examples of uranyl compounds that contain cation-cation interactions where an O atom of one uranyl ion is directly linked to another uranyl ion. Both structures are complex frameworks. SrFm contains sheets of polyhedra that are linked through cation-cation interactions with uranyl ions located between the sheets. CsFm possesses an unusually complex framework of vertex- and edge-sharing U6+ polyhedra that incorporates cation-cation interactions.  相似文献   

11.
本文考虑相对论效应并应用密度泛函理论(DFT)研究水溶液中UO2Xn(H2O)5-n(X=F,Cl,Br;n=1~4)和UO2Xn(X=F,Cl,Br;n=1~6)一系列水合和非水合铀酰化合物的结构和紫外吸收光谱性质。将这一系列物质命名为Xnm(X为F,Cl,和Br;n为卤素配体个数,m为水分子配体的个数)。在水溶液中,溶剂化效应采用类导体屏蔽模型(COSMO)并采用SAS溶剂接触曲面构造空穴模拟水溶剂对配合物的作用。配合物的紫外光谱性质采用考虑旋-轨耦合相对论效应的含时密度泛函(SO-TD-DFT)进行计算。U=O键随着F配体数目的增加而明显伸长,然而随Cl和Br配体数目的增加变化较小。随X配体数目的增加和水分子参与配位,铀与X的结合能逐渐减弱。配合物的紫外光谱计算表明铀酰氟的各种配合物并不出现特征吸收峰,而铀酰氯和铀酰溴的各种配合物均有特征吸收光谱。通过分子轨道分析可以很好解释光谱所体现的特征。  相似文献   

12.
The first definitive high-resolution single-crystal X-ray structure for the coordination of the 1-methylimidazole (Meimid) ligand to UO2(Ac)2 (Ac = CH3CO2) is reported. The crystal structure evidence is confirmed by IR, Raman, and UV-vis spectroscopic data. Direct participation of the nitrogen atom of the Meimid ligand in binding to the uranium center is confirmed. Structural analysis at the DFT (B3LYP) level of theory showed a conformational difference of the Meimid ligand in the free gas-phase complex versus the solid state due to small energetic differences and crystal packing effects. Energetic analysis at the MP2 level in the gas phase supported stronger Meimid binding over H2O binding to both UO2(Ac)2 and UO2(NO3)2. In addition, self-consistent reaction field COSMO calculations were used to assess the aqueous phase energetics of combination and displacement reactions involving H2O and Meimid ligands to UO2R2 (R = Ac, NO3). For both UO2(NO3)2 and UO2(Ac)2, the displacement of H2O by Meimid was predicted to be energetically favorable, consistent with experimental results that suggest Meimid may bind uranyl at physiological pH. Also, log(Knitrate/KAc) calculations supported experimental evidence that the binding stoichiometry of the Meimid ligand is dependent upon the nature of the reactant uranyl complex. These results clearly demonstrate that imidazole binds to uranyl and suggest that binding of histidine residues to uranyl could occur under normal biological conditions.  相似文献   

13.
Novel open-framework alkali metal uranyl periodates, having the formula A[(UO2)3(HIO6)(OH)(O)(H2O)].1.5H2O (A = Li, Na, K, Rb, Cs), have been prepared through mild hydrothermal synthesis. These isostructural compounds contain distorted UO7 pentagonal bipyramids that are linked through a uranyl (UO22+) to uranyl cation-cation interaction. This interaction arises from a single axial uranyl oxygen coordinating at an equatorial site of an adjacent uranyl unit. These uranium oxide polyhedra are further bound by IO6 distorted octahedra creating an open-framework structure whose channels contain the alkali metal cations.  相似文献   

14.
To clarify the electronic spectral properties of uranyl(V) complexes systematically, we measured absorption spectra of three types of pure uranyl(V) complexes: [U(V)O2(dbm)2DMSO]-, [U(V)O2(saloph)DMSO]-, and [U(V)O2(CO3)3]5- (dbm = dibenzoylmethanate, saloph = N,N'-disalicylidene-o-phenylenediaminate, DMSO = dimethyl sulfoxide). As a result, it was found that these uranyl(V) complexes have characteristic absorption bands in the visible-near-infrared (NIR) region, i.e., at around 640, 740, 860, 1470, and 1890 nm (molar absorptivity, epsilon = 150-900 M(-1).cm(-1)) for [U(V)O2(dbm)2DMSO]-, 650, 750, 900, 1400, and 1875 nm (epsilon = 100-300 M(-1).cm(-1)) for [U(V)O2(saloph)DMSO]-, and 760, 990, 1140, 1600, and 1800 nm (epsilon = 0.2-3.6 M(-1).cm(-1)) for [U(V)O2(CO3)3]5-. These characteristic absorption bands of the uranyl(V) complexes are attributable to the electronic transitions in the U(V)O2+ core because the spectral features are similar to each other despite the differences in the ligands coordinated to the equatorial plane of the U(V)O2+ moiety. On the other hand, the epsilon values of [U(V)O2(CO3)3]5- are quite smaller than those of [U(V)O2(dbm)2DMSO]- and [U(V)O2(saloph)DMSO]-. Such differences can be explained by the different coordination geometries around the center uranium in these uranyl(V) complexes. Consequently, the absorption bands of the uranyl(V) complexes in visible-NIR region were assigned to f-f transitions in the 5f1 configuration.  相似文献   

15.
The gas-phase infrared spectra of discrete uranyl ([UO2]2+) complexes ligated with acetone and/or acetonitrile were used to evaluate systematic trends of ligation on the position of the O=U=O stretch and to enable rigorous comparison with the results of computational studies. Ionic uranyl complexes isolated in a Fourier transform ion cyclotron resonance mass spectrometer were fragmented via infrared multiphoton dissociation using a free electron laser scanned over the mid-IR wavelengths. The asymmetric O=U=O stretching frequency was measured at 1017 cm(-1) for [UO2(CH3COCH3)2]2+ and was systematically red shifted to 1000 and 988 cm(-1) by the addition of a third and fourth acetone ligand, respectively, which was consistent with increased donation of electron density to the uranium center in complexes with higher coordination number. The values generated computationally using LDA, B3LYP, and ZORA-PW91 were in good agreement with experimental measurements. In contrast to the uranyl frequency shifts, the carbonyl frequencies of the acetone ligands were progressively blue shifted as the number of ligands increased from two to four and approached that of free acetone. This observation was consistent with the formation of weaker noncovalent bonds between uranium and the carbonyl oxygen as the extent of ligation increases. Similar trends were observed for [UO2(CH3CN)n]2+ complexes, although the uranyl asymmetric stretching frequencies were greater than those measured for acetone complexes having equivalent coordination, which is consistent with the fact that acetonitrile is a weaker nucleophile than is acetone. This conclusion was confirmed by the uranyl stretching frequencies measured for mixed acetone/acetonitrile complexes, which showed that substitution of one acetone for one acetonitrile produced a modest red shift of 3-6 cm(-1).  相似文献   

16.
The reaction of uranyl nitrate with asymmetric [3O, N] Schiff base ligands in the presence of base yields dinuclear uranyl complexes, [UO2(HL1)]2.DMF (1), [UO2(HL2)]2.2DMF.H2O (2), and [UO2(HL3)]2.2DMF (3) with 3-(2-hydroxybenzylideneamino)propane-1,2-diol (H3L1), 4-((2,3-dihydroxypropylimino)methyl)benzene-1,3-diol (H3L2), and 3-(3,5-di-tert-butyl-2-hydroxybenzylideneamino)propane-1,2-diol (H3L3), respectively. All complexes exhibit a symmetric U2O2 core featuring a distorted pentagonal bipyramidal geometry around each uranyl center. The hydroxyl groups on the ligands are attached to the uranyl ion in chelating, bridging, and coordinate covalent bonds. Distortion in the backbone is more pronounced in 1, where the phenyl groups are on the same side of the planar U2O2 core. The phenyl groups are present on the opposite side of U2O2 core in 2 and 3 due to electronic and steric effects. A similar hydrogen-bonding pattern is observed in the solid-state structures of 1 and 3 with terminal hydroxyl groups and DMF molecules, resulting in discrete molecules. Free aryl hydroxyl groups and water molecules in 2 give rise to a two-dimensional network with water molecules in the channels of an extended corrugated sheet structure. Compound 1 in the presence of excess Ag(NO3) yields {[(UO2)(NO3)(C6H4OCOO)](NH(CH2CH3)3)}2 (4), where the geometry around the uranyl center is hexagonal bipyrimidal. Two-phase extraction studies of uranium from aqueous media employing H3L3 indicate 99% reduction of uranyl ion at higher pH.  相似文献   

17.
A first amine-templated uranyl selenate based upon highly porous uranyl selenate nanotubules, (C4H12N)14[(UO2)10(SeO4)17(H2O)], has been prepared in the room-temperature reaction of uranyl nitrate, butylamine, and H2SeO4 in aqueous solution. The structure consists of nanometer-scale tubular [(UO2)10(SeO4)17(H2O)]14- units packed in a hexagonal-type fashion. The tubules have elliptical cross section with outer dimensions of 25 x 23 A = 2.5 x 2.3 nm. The internal free crystallographic diameter of the tubules is 12.6 A = 1.26 nm, which is comparable to the effective pore size in large-pore zeolites. This finding demonstrates the possibility of nanostructures for actinides in higher oxidation states and opens up a new area of research and exploration.  相似文献   

18.
A series of uranyl and lanthanide (trivalent Ce, Nd) mellitates (mel) has been hydrothermally synthesized in aqueous solvent. Mixtures of these 4f and 5f elements also revealed the formation of a rare case of lanthanide-uranyl coordination polymers. Their structures, determined by XRD single-crystal analysis, exhibit three distinct architectures. The pure lanthanide mellitate Ln(2)(H(2)O)(6)(mel) possesses a 3D framework built up from the connection of isolated LnO(6)(H(2)O)(3) polyhedra (tricapped trigonal prism) through the mellitate ligand. The structure of the uranyl mellitate (UO(2))(3)(H(2)O)(6)(mel)·11.5H(2)O is lamellar and consists of 8-fold coordinated uranium atoms linked to each other through the organic ligand giving rise to the formation of a 2D 3(6) net. The third structural type, (UO(2))(2)Ln(OH)(H(2)O)(3)(mel)·2.5H(2)O, involves direct oxygen bondings between the lanthanide and uranyl centers, with the isolation of a heterometallic dinuclear motif. The 9-fold coordinated Ln cation, LnO(5)(OH)(H(2)O)(3), is linked to the 7-fold coordinated uranyl (UO(2))O(4)(OH) (pentagonal bipyramid) via one μ(2)-hydroxo group and one μ(2)-oxo group. The latter is shared between the uranyl bonding (U═O = 1.777(4)/1.779(6) ?) and a long Ln-O bonding (Ce-O = 2.822(4) ?; Nd-O = 2.792(6) ?). This unusual linkage is a unique illustration of the so-called cation-cation interaction associating 4f and 5f metals. The dinuclear motif is then further connected through the mellitate ligand, and this generates organic-inorganic layers that are linked to each other via discrete uranyl (UO(2))O(4) units (square bipyramid), which ensure the three-dimensional cohesion of the structure. The mixed U-Ln carboxylate is thermally decomposed from 260 to 280 °C and then transformed into the basic uranium oxide (U(3)O(8)) together with U-Ln oxide with the fluorite structural type ("(Ln,U)O(2)"). At 1400 °C, only fluorite type "(Ln,U)O(2)" is formed with the measured stoichiometry of U(0.63)Ce(0.37)O(2) and U(0.60)Nd(0.40)O(2-δ).  相似文献   

19.
Two novel coordination polymers, UO2(C5H2N2O4)(H2O) (1) and (UO2)Cu(C5H2N2O4)2(H2O)2 (2), have been prepared by the hydrothermal reaction of uranyl nitrate hexahydrate [(UO2(NO3)2.6H2O], 3,5-pyrazoledicarboxylic acid (H3pdc) and copper(II) nitrate hemipentahydrate (Cu(NO3)2.2.5H2O) and characterized by single-crystal X-ray diffraction, thermogravimetric analyses (TGA) and fluorescence spectroscopy. Compound 1 (monoclinic, P2(1)/c, a=6.9556(6)A, b=11.302(1)A, c= 10.5288(9)A, beta=90.057(2) degrees and Z=4) consists of a two-dimensional sheet containing uranyl hexagonal bipyramids. Compound 2 (triclinic, P-1, a=5.1014(7)A, b=7.6067(11)A, c=10.2910(15)A, alpha=72.380(3) degrees, beta=86.796(3) degrees, gamma=84.447(3) degrees and Z=1) consists of two-dimensional sheets. Both structures contain the linear UO2(2+) moiety and have extended networks built up from the H3pdc ligand. Compound 1 exhibits the characteristic UO(2)2+ emission spectra when it is excited at the ligand or uranium excitation wavelength. With the addition of the copper metal center in compound 2, the uranium emission is absent regardless of the excitation wavelength.  相似文献   

20.
Treatment of [UO(2)Cl(2)(thf)(3)] in thf with 2 equiv of Na[PhC(NSiMe(3))(2)] (Na[NCN]) or Na[Ph(2)P(NSiMe(3))(2)] (Na[NPN]) gives uranyl complex [UO(2)(NCN)(2)(thf)] (1) or [UO(2)(NPN)(2)] (3), respectively. Each complex is a rare example of out-of-plane equatorial nitrogen ligand coordination; the latter contains a significantly bent O=U=O unit and represents the first example of a uranyl ion within a quadrilateral-faced monocapped trigonal prismatic geometry. Removal of the thf in 1 gives [UO(2)(NCN)(2)] (2) with in-plane N donor ligands. Addition of 3 equiv of Na[NCN] gives the tris complex [Na(thf)(2)PhCN][[UO(2)(NCN)(3)] (4.PhCN) with elongation and weakening of one U=O bond through coordination to Na(+). Hydrolysis of 4 provides the oxo-bridged dimer [Na(thf)UO(2)(NCN)(2)](2)(micro(2)-O) (6), a complex with the lowest reported O=U=O symmetrical stretching frequency (nu(1) = 757 cm(-)(1)) for a dinuclear uranyl complex. The anion in complex 4 is unstable in solution but can be stabilized by the introduction of 18-crown-6 to give [Na(18-crown-6)][UO(2)(NCN)(3)] (5). The structures of 1-4 and 6 have been determined by crystallography, and all except 2 show significant deviations of the N ligand atoms from the equatorial plane, driven by the steric bulk of the NCN and NPN ligands. Despite the unusual geometries, these distortions in structure do not appear to have any direct effect on the bonding and electronic structure of the uranyl ion. The main influences toward lowering the U=O bond stretching frequency (nu(1)) are the donating ability of the equatorial ligands, overall charge of the complex, and U=O.Na-type interactions. The intense orange/red colors of these compounds are because of low-energy ligand-to-metal charge-transfer electronic transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号