首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new Pd(II) complexes with 3-amino-5-methyl-5-(4-pyridyl)-hydantoin (AMPH) were synthesized: cis-[Pd(AMPH)2Cl2]·2H2O and cis-[Pd(AMPH)2Br2]·H2O. The complexes were characterized by physico-chemical and spectroscopic methods. The determination of crystal water content in the complexes was defined by Karl Fisher titration. The cytotoxic effects of these complexes were examined on a panel of human tumor cell lines. Qualitative antimicrobial assays on three pathogenic microorganisms of the new complexes, their analogues with 5-methyl-5-(4-pyridyl)-hydantoin(MPH) and their platinum analogues were made. Cis-[Pd(mpyh)2Br2]·H2O showed significant activity against C. albicans.  相似文献   

2.
1H NMR spectroscopy was applied to study the reactions of palladium(II) complexes, cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ (dpa is 2,2′-dipyridylamine acting as a bidentate ligand) with the dipeptides methionylglycine (Met-Gly) and histidylglycine (His-Gly), and the N-acetylated derivatives of these dipeptides, MeCOMet-Gly and MeCOHis-Gly. All reactions were carried out in the pH range 2.0–2.5 with equimolar amounts of the palladium(II) complex and the peptide at two different temperatures, 25 and 60 °C. In the reactions of cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ with Met-Gly and His-Gly, no hydrolysis of the peptide bond was observed. The final product in these reactions was the [Pd(dpa)2]2+ complex. The square-planar structure of this complex was confirmed by X-ray analysis. The reaction of the cis-[Pd(dpa)(H2O)2]2+ complex with the MeCOHis-Gly and MeCOMet-Gly peptides under the previously mentioned experimental conditions was remarkably selective in the cleavage of the amide bond involving the carboxylic group of methionine in the side chain. The modes of coordination of cis-[Pd(dpa)Cl2] and cis-[Pd(dpa)(H2O)2]2+ in the reactions with the non-acetylated peptides and the total steric inhibition of the hydrolytic reaction between cis-[Pd(dpa)(H2O)2]2+ and MeCOHis-Gly can be attributed to the steric bulk of the palladium(II) complex. This finding should be taken into consideration in designing new palladium(II) complexes for the regioselective cleavage of peptides and proteins.  相似文献   

3.
The behavior of potassium tetrachloropalladate(II) in media simulating biological fluids has been studied. In aqueous solutions of NaCl, the aquation rate is higher than the rate of chloro ligand introduction into the internal coordination sphere of palladium. In HCl solutions, on the contrary, the process of palladium chloro complex formation predominates. The latter is apparently due to protonation of water molecules composing aqua complexes. By means of the ZINDO/1 method, the substitution of ligands – water molecules and hydronium ion – in planar complexes of palladium(II) by chloride ion has been investigated. All complexes containing H2O and H3O+ ligands, other than [Pd(H2O)4]2+, have intramolecular hydrogen bonds. In [Pd(H2O)3(H3O)]3+ and trans-[Pd(H2O)2(H3O)Cl]2+, a “non-classic” symmetric hydrogen bond O ··· H ··· O is established (ZINDO/1, RHF/STO-6G*). By the first three steps the substitution of hydronium ion in the internal sphere of palladium atom is more favorable thermodynamically, compared to water molecules. Logarithms of stepwise stability constants of palladium(II) chloride complexes correlate linearly to enthalpies (ZINDO/1, PM3) of water substitution by chloride ion.  相似文献   

4.
New complexes [Pd(HDMBG)2]Cl2·H2O, [PdL1]Cl2·0.5H2O and [PdL2]Cl2·1.5H2O (HDMBG: dimethylbiguanide, L1 and L2: ligands resulted from HDMBG, ammonia/hydrazine and formaldehyde template condensation) were synthesized and characterized. The features of complexes have been assigned from microanalytical, IR, UV–Vis and cyclic voltammetry data. The thermal transformations are complex processes according to TG and DTA curves including water and hydrochloric acid elimination, thermolysis processes leading to paracyanide formation as well as PdO decomposition, final product being palladium. Complexes were screened for their antimicrobial properties against some pathogenic Gram-positive and Gram-negative bacterial as well as fungal Candida albicans strains. The complexes exhibit specific antibacterial and/or antifungal activity, depending on their structure and the tested microbial strains. All complexes inhibit the microbial biofilm development on the inert substratum. It was also observed that PdCl2 complexation minimized their cytotoxic effect on the eukaryotic cells.  相似文献   

5.
The present work describes the preparation and characterization of some metal ion complexes derived from 4-formylpyridine-4 N-(2-pyridyl)thiosemicarbazone (HFPTS). The complexes have the formula; [Cd(HFPTS)2H2O]Cl2, [CoCl2(HPTS)]·H2O, [Cu2Cl4(HPTS)]·H2O, [Fe (HPTS)2Cl2]Cl·3H2O, [Hg(HPTS)Cl2]·4H2O, [Mn(HPTS)Cl2]·5H2O, [Ni(HPTS)Cl2]·2H2O, [UO2(FPTS)2(H2O)]·3H2O. The complexes were characterized by elemental analysis, spectral (IR, 1H-NMR and UV–Vis), thermal and magnetic moment measurements. The neutral bidentate coordination mode is major for the most investigated complexes. A mononegative bidentate for UO2(II), and neutral tridentate for Cu(II). The tetrahedral arrangement is proposed for most investigated complexes. The biological investigation displays the toxic activity of Hg(II) and UO2(II) complexes, whereas the ligand displays the lowest inhibition activity toward the most investigated microorganisms.  相似文献   

6.
Sodium in dry methanol reduces 2‐cyanopyridine in the presence of 3‐hexamethyleneiminylthiosemicarbazide and produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim ( 1 ). Complexes with zinc(II ), cadmium(II ) and mercury(II ) have been prepared and characterized by spectroscopic techniques. In addition, the crystal structures of HAmhexim ( 1 ), [Zn(Amhexim)(OAc)]2μ·μDMSO ( 2 ), [Cd(HAmhexim)Cl2]μ·μDMSO ( 7 ), [Cd(Amhexim)2] ( 8 ), [Cd(HAmhexim)Br2]μ·μDMSO ( 9 ), [Cd(HAmhexim)I2]μ·μEtOH ( 10 ), [Hg(HAmhexim)Cl2]μ·μDMSO ( 11 ), [Hg(Amhexim)Br]2 ( 13 ), [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O ( 14 ) and [Hg(Amhexim)I]2 ( 15 ) have been determined. Coordination of the anionic and neutral thiosemicarbazone ligand occurs through the pyridine nitrogen atom, imine nitrogen atom, and thiolato or thione sulfur atom. In [Zn(Amhexim)(OAc)]2 one of the bridging acetato ligands has monodentate coordination and the other bridges in a bidentate manner. [Cd(Amhexim)2] is a 6‐coordinate species while the other cadmium complexes are 5‐coordinate. In [Hg(Amhexim)Br]2 and [Hg(Amhexim)I]2 the thiolato sulfur atoms act as bridges between the Hg atoms to form dimeric compounds and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O is a trinuclear complex with three different centers — two metallic centers have a 5‐coordination and the another one has 4‐coordination. In addition, [Hg(HAmhexim)Cl2]μ·μDMSO and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O shown a supramolecular one‐dimensional hydrogen‐bonded self‐assembling.  相似文献   

7.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

8.
A new ligand, 3-methyl-4-(p-bromophenyl)-5-(2-pyridyl)-1,2,4-triazole (L) and its complexes, trans-[CuL2(ClO4)2] (1) and cis-[CoL2(H2O)2](ClO4)2·H2O·CH3OH (2), have been synthesized and characterized by UV, IR, electrospray ionization mass spectrum, elemental analyses, and single-crystal X-ray diffraction methods. In the structure, two L ligands are stabilized by intermolecular π···π interactions between the triazole rings. In the complexes, each L ligand adopts a chelating bidentate mode through N atom of pyridyl group and one N atom of the triazole. Both complexes have a similar distorted octahedral [MN4O2] core (M = Cu2+ and Co2+) with two ClO4 ions in the trans position in 1 but two H2O molecules in the cis arrangement in 2.  相似文献   

9.
Novel oligonuclear complexes of Co(II), Ni(II), and Cu(II) with 4-(3,4-dichlorophenyl)-1,2,4-triazole (L) of the composition [M3L10(H2O)2](NO3)6 (M = Co(II), Ni(II)), [Ni3L6(H2O)6]Hal6 (Hal = Cl?, Br?), and [Cu5L16(H2O)2](NO3)10 · 2H2O were synthesized and studied by magnetic susceptibility, electronic and IR spectroscopy, and powder X-ray diffraction methods. All the above complexes are X-ray amorphous. Antifer-romagnetic exchange interactions between the M2+ ions were discovered in the [Co3L10(H2O)2](NO3)6 and [Ni3L10(H2O)2](NO3)6 complexes, whereas ferromagnetic exchange interactions were observed in the complexes [Ni3L6(H2O)6]Cl6, [Ni3L6(H2O)6]Br6, and [Cu5L16(H2O)2](NO3)10 · 2H2O.  相似文献   

10.
Summary The nitrogen-donor ligands 1-methylbenzotriazole (1Mebta), 5-methylbenzotriazole (5MebtaH), 5-chlorobenzotriazole (5ClbtaH) and 5-nitrobenzotriazole (5NO2btaH) react with palladium(II) and platinum(II) to give cis-[PdL2Cl2], cis-[PtL2Cl2] (L = 1Mebta, 5MebtaH, 5ClbtaH or 5NO2btaH), [Pt(5ClbtaH)4]Cl2, [Pd-(5MebtaH)Cl2]2, [Pd(5ClbtaH)Cl2]2 and [Pd(5NO2btaH)-Cl2]2. The complexes were characterized by physicochemical and spectroscopic methods. The benzotriazoles act as monodentate ligands binding through N(3). Monomeric square planar structures are assigned for the 12 complexes and [Pt(5ClbtaH)4]Cl2 in the solid state. Centrosymmetric, chloro-bridged, dinuclear square planar structures of C2h symmetry are proposed for the 11 palladium(II) compounds.  相似文献   

11.
A new asymmetrical substituted triazole, 3-phenoxymethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (L) and its complexes, cis-[Cu2 L 2Cl4]·2CH3CN (1) and trans-[CoL 2Cl2]·2H2O·2CH3CN (2), have been synthesized and characterized by IR, single-crystal X-ray diffraction, thermogravimetric analyses and Hirshfeld surfaces. In the structure, two L are mainly stabilized by an intermolecular C–H?N hydrogen bond. In 1 (or 2), each L involves a doubly-bidentate (or chelating bidentate) coordination mode through one pyridine and two nitrogens (or one) of triazole, respectively. Complex 1 has a distorted trigonal bipyramidal [CuN3Cl2] core with two cis Cl? while 2 shows a distorted octahedron [CoN4Cl2] with two trans Cl?. We also prepared molecular Hirshfeld surface and fingerprint plot for L, 1 and 2, which revealed the influence of different metals on coordinate of L.  相似文献   

12.

Two new co-ordination compounds of PdII with 1-vinylimidazole of the formulae [PdL4]Cl2·3H2O and trans-[PdL2Cl2], where L is a 1-vinylimidazole molecule, have been obtained. The compounds were characterised by spectroscopic, molar conductivity, thermogravimetric and magnetochemical measurements. Single crystal X-ray structure analyses of the complexes were also carried out. The compounds are diamagnetic with square-planar coordinatination around the palladium(II) ions. Other physico-chemical properties of the both complexes are compatible with their structures.  相似文献   

13.
Four CuII and CoII complexes–[Cu(L1)Cl2(H2O)]3/2H2O · 1/2EtOH, [Cu(L1)2Cl2]6H2O, [Co(L1)Cl2]3H2O · EtOH, and [Co2(L1)(H2O)Cl4]1.5H2O · EtOH (L1 = 2,4,6-tri(2-pyridyl)-1,3,5-triazine; TPT)–were synthesized by conventional chemical method and used to synthesize another four metal complexes–[Cu(L1)I2(H2O)]6H2O, [Cu(L1)2I2]6H2O, [Co(L1)I(H2O)2]I · 2H2O, and [Co2(L1)I4(H2O)3]–using tribochemical reaction, by grinding it with KI. Substitution of chloride by iodide occurred, but no reduction for CuII or oxidation of CoII. Oxidation of CoII to CoIII complexes was only observed on the dissolution of CoII complexes in d6-DMSO in air while warming. The isolated solid complexes (CuII and CoII) have been characterized by elemental analyses, conductivities, spectral (IR, UV-Vis, 1H-NMR), thermal measurements (TGA), and magnetic measurements. The values of molar conductivities suggest non-electrolytes in DMF. The metal complexes are paramagnetic. IR spectra indicate that TPT is tridentate coordinating via the two pyridyl nitrogens and one triazine nitrogen forming two five-membered rings around the metal in M : L complexes and bidentate via one triazine nitrogen and one pyridyl nitrogen in ML2 complexes. In binuclear complexes, L is tridentate toward one CoII and bidentate toward the second CoII in [Co2(L1)Cl4]2.5H2O · EtOH and [Co2(L1)I4(H2O)3]. Electronic spectra and magnetic measurements suggest a distorted-octahedral around CuII and high-spin octahedral and square-pyramidal geometry around CoII.  相似文献   

14.
Palladium(II) complexes of thiones having the general formula [Pd(L)4]Cl2, where L = thiourea (Tu), methylthiourea (Metu), N,N′-dimethylthiourea (Dmtu), and tetramethylthiourea (Tmtu) were prepared by reacting K2[PdCl4] with the corresponding thiones. The complexes have been characterized by elemental analysis, IR and NMR spectroscopy, and two of these, [Pd(Dmtu)4]Cl2 · 2H2O (1) and [Pd(Tmtu)4]Cl2 (2), by X-ray crystallography. An upfield shift in the >C=S resonance of thiones in 13C NMR and downfield shift in N–H resonance in 1H NMR are consistent in showing sulfur coordination with palladium(II). The crystal structures of the complexes show a square-planar coordination environment around the Pd(II) ions with the average cis and trans S–Pd–S bond angles of 89.64° and 173.48°, respectively. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

15.
Reduction of 2‐cyanopyridine by sodium in the presence of 3‐hexamethyleneiminylthiosemicarbazide produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim. Complexes with nickel(II), copper(II) and palladium(II) have been prepared and the following complexes structurally characterized: [Ni(Amhexim)OAc], [{Cu(Amhexim)}2C4H4O4]·2DMSO·H2O, [Cu(HAmhexim)Cl2] and [Pd(Amhexim)Cl]. Coordination is via the pyridyl nitrogen, imine nitrogen and thiolato or thione sulfur atom when coordinating as the anionic or neutral ligand, respectively. [{Cu(Amhexim)}2C4H4O4] is a binuclear complex with the two copper(II) ions bridged by the succinato group in [Cu‐(HAmhexim)Cl2] the Cu atom is 5‐coordinate and close to a square pyramid structure and in [Ni(Amhexim)OAc] and [Pd(Amhexim)Cl] the metal atoms are planar, 4‐coordinate.  相似文献   

16.
The reaction of the aryl‐oxide ligand H2L [H2L = N,N‐bis(3, 5‐dimethyl‐2‐hydroxybenzyl)‐N‐(2‐pyridylmethyl)amine] with CuSO4 · 5H2O, CuCl2 · 2H2O, CuBr2, CdCl2 · 2.5H2O, and Cd(OAc)2 · 2H2O, respectively, under hydrothermal conditions gave the complexes [Cu(H2L1)2] · SO4 · 3CH3OH ( 1 ), [Cu2(H2L2)2Cl4] ( 2 ), [Cu2(H2L2)2Br4] ( 3 ), [Cd2(HL)2Cl2] ( 4 ), and [Cd2(L)2(CH3COOH)2] · H2L ( 5 ), where H2L1 [H2L1 = 2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenol] and H2L2 [H2L2 = 2‐(2, 4‐dimethyl‐6‐((pyridin‐2‐ylmethylamino)methyl)phenoxy)‐4, 6‐dimethylphenol] were derived from the solvothermal in situ metal/ligand reactions. These complexes were characterized by IR spectroscopy, elementary analysis, and X‐ray diffraction. A low‐temperature magnetic susceptibility measurement for the solid sample of 2 revealed antiferromagnetic interactions between two central copper(II) atoms. The emission property studies for complexes 4 and 5 indicated strong luminescence emission.  相似文献   

17.
Stereoisomeric Pt(IV) complexes with threonine (ThrH = HOCH(CH3)CH(NH2)COOH, ??-amino-??-hydroxybutyric acid) were obtained. In the complexes trans-[Pt(S-ThrH)2Cl4] and trans-[Pt(R-ThrH)(S-ThrH)Cl4], the ThrH molecules act as monodentate ligands coordinated through the NH2 group. In the complexes cis- and trans-[Pt(S-Thr)2Cl2] and trans-[Pt(R-Thr)(S-Thr)Cl2], the deprotonated ligands are coordinated in a bidentate fashion through the NH2 and COO?-groups (R,S is the absolute configuration of the asymmetric carbon atom). All the complexes were identified using elemental analysis, IR spectroscopy, and 195Pt, 13C, and 1H NMR spectroscopy. The complexes trans-[Pt(S-ThrH)2Cl4] · 3H2O and cis-[Pt(S-Thr)2Cl2] · 2H2O were additionally characterized by X-ray diffraction.  相似文献   

18.
Two palladium(II) complexes, [Pd(bipy)(BzPhe‐N,O)] and [Pd(phen)(BzPhe‐N,O)]·4H2O were synthesized by reactions between Pd(bipy)Cl2 and BzPheH2 (N‐benzoyl‐β‐phenylalanine), Pd(phen) Cl2 and BzPheH2 in water at pH‐9, with their structures determined by X‐ray diffraction analysis. The Pd atom is coordinated by two nitrogen atoms of bipy (or phen), the deprotonated amido type nitrogen atom and one of the carboxylic oxygens of BzPhe (BzPhe = N‐benzoyl‐β‐phenylalaninate dianion). In the complex [Pd(phen) (BzFne‐N,O)] · 4H2O, the side chain of phenylalanine is located above and approximately parallels to the coordination plane. Both the aromatic‐aromatic stacking interaction between the phenyl ring of phenylalanine and phen, and the metal ion‐aromatic interaction between the phenyl ring of phenylalanine and Pd(II) were observed. [Pd(bipy)(BzPhe‐N,O)] has the phenylalanyl side chain oriented outwards from the coordination plane, which is mainly due to the interaction between the carbonyl oxygen atom of the amido group and the phenyl ring of phenylalanine. The reason for the different orientation of phenylalanyl side chain in the complexes was suggested.  相似文献   

19.
The reactions of AuIII, PtII and PdII complexes with 2-pyridinecarboxaldehyde (2CHO-py) have been examined in protic (H2O, MeOH, EtOH) and aprotic (DMF, CH2Cl2) solvents. Compounds in which the pyridine ligand is N-coordinated, either in the original aldehydic form or in a new form derived from addition of one or two protic molecules, have been isolated, namely: [Au(2CHO-py · H2O)Cl3], [Au(2CHO-py · MeOH)Cl3], [Au(2CHO-py · 2EtOH)Cl3], cis-[Pt(2CHO-py)2Cl2], trans-[Pd(2CHO-py)2Cl2], trans-[Pt(dmso)(2CHO-py)Cl2], [Pt{C5H4N-(CH2SMe)}Cl(2CHO-py)](ClO4), [Pt(terpy)(2CHOpy)](ClO4)2, [Pt(terpy)(2CHO-py · H2O)](ClO4)2 (terpy = 2,2′:6′,2′′-terpyridine). 1H-n.m.r. experiments show that the addition of the protic molecule(s) to the PtII and PdII complexes is reversible. The effects of the nature of the metal ion and the ancillary ligands as well as of the total charge of the complexes on the relative stability of the addition products are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Summary The following palladium(II) and platinum(ll) complexes of rhodanine (HRd) and 3-methylrhodanine (MRd) have been prepared: Pd(HRd)1.5Cl2, Pd(HRd)2Br2, Pd(HRd)2Br2 · 0.25 EtOH, M(MRd)2X2 [M = Pd, X = Cl (0.25 EtOH) or Br; M = Pt, X = Cl or Br], Pd(MRd)3Br2, and M(MRd)4(ClO4)2 (M = Pd or Pt). The ligands are coordinated to the metal through the thiocarbonylic sulphur atom. Pd(HRd)1.5Cl2 has presumably a structure such as (X = Cl or Br) complexes have a trans-planar coordination. Pd(MRd)2X2 (X = Cl or Br) complexes arecis-planar coordinated. Pd(MRd)3Br2 has presumably a square coordination with two MRd molecules and two CI ionscis-coordinated in the equatorial plane, and a MRd molecule and a Cl ion weakly bonded in apical position. The M(MRd)4(ClO4)2 complexes have square planar coordination.Author to whom all correspondence should be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号