首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The preparation and electrochemical characterization of a carbon nanotube paste electrode modified with 2,2′-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone, referred to as EBNBH, was investigated. The EBNBH carbon nanotube paste electrode (EBNBHCNPE) displayed one pair of reversible peaks at E pa = 0.18 V and E pc = 0.115 V vs Ag/AgCl. Half wave potential (E 1/2) and ΔE p were 0.148 and 0.065 V vs Ag/AgCl, respectively. The electrocatalytic oxidation of ascorbic acid (AA) has been studied on EBNBHCNPE, using cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. It has been shown that the oxidation of AA occurs at a potential where oxidation is not observed at the unmodified carbon paste electrode. The heterogeneous rate constant for oxidation of AA at the EBNBHCNPE was also determined and found to be about 1.07 × 10−3 cm s−1. The diffusion coefficient of AA was also estimated as 5.66 × 10−6 cm2 s−1 for the experimental conditions, using chronoamperometry. Also, this modified electrode presented the property of electrocatalysing the oxidation of AA and uric acid (UA) at 0.18 and 0.35 V vs Ag/AgCl, respectively. The separations of anodic peak potentials of AA and UA reached 0.17 V. Using differential pulse voltammetry, the calibration curves for AA and UA were obtained over the range of 0.1–800 μM and 20–700 μM, respectively. With good selectivity and sensitivity, the present method provides a simple method for selective detection of AA and UA in biological samples.  相似文献   

2.
Electrochemical behavior of resazurin on HMDE in Britton-Robinson (B-R) buffers (pH 2.0–10.0) was studied using the square-wave voltammetry (SWV), square-wave adsorptive stripping voltammetry (SWAdSV), and cyclic voltammetry (CV) techniques. The voltammogram of resazurin in B-R buffer at pH < 4.0 exhibited two cathodic reduction peaks. The voltammetric peaks were obtained at −0.144 V (reversible) and −1.250 V (irreversible) at pH 3.2, and correspond to the reduction of resorufin to dihydroresorufin and to the catalytic hydrogen wave, respectively. At pH > 4.0, a new irreversible cathodic reduction peak, assigned to the protonation of N-oxide on the phenoxazin ring, was observed. Electrochemical parameters (I p/E p, I p/v, I p/pH, I p/t acc) of the compound were determined. From the voltammetric data, electrochemical reduction mechanisms for all peaks have been suggested. Maximum peak current for the reversible peak was obtained at pH 4.1. A linear relationship between the current and concentration was determined, and also the lowest detection limit was found as 3.25 × 10−8 mol L−1 and 1.98 × 10−10 mol L−1 for SWV and SWAdSV, respectively.  相似文献   

3.
Multiwalled carbon nanotubes-polymeric alizarin film modified electrode was made. The electrochemical behavior of levofloxacin hydrochloride on modified electrode was studied with cyclic voltammetry, linear sweep voltammetry and chronopotentiometry. The results indicated that the electrical oxidation of levofloxacin hydrochloride on MWNT-PAR electrode, in HAc-NaAc buffer solution at pH 4.2 was irreversible and was controlled by diffusion. Some important parameters m, n, D, E D, ΔS rc and ΔH rc of the electrochemical process were evaluated. Good linearity relationship between peak current and its concentration in the range of 5.0 × 10−6–1.0 × 10−4 mol l−1 was found, of which the equation was I p(A) = −5.456 × 10−6 0.2667c, the correlative coefficient r = −0.9976 and detect limitation was 4.0 × 10−7 mol l−1. The recovery of levofloxacin hydrochloride in levofloxacin hydrochloride injection was between 94.6 and 104.7%.  相似文献   

4.
Gold nanoparticles (GNs) could be efficiently immobilized on binary mixed self-assembled monolayers (SAMs) on a gold surface composed of 1,6-hexanedithiol and 1-octanethiol (nano-Au/SAMs gold electrode). This GN chemically modified electrode was used for electrochemical determination of ascorbic acid (AA) and dopamine (DA) in aqueous media. The result showed that the GN-modified electrode could clearly resolve the oxidation peaks of AA and DA, with a peak-to-peak separation (∆E p) of 110 mV enabling determination of AA and DA in the presence of each other. The linear analytical curves were obtained in the ranges of 0.3–1.4 mM for AA and 0.2–1.2 mM for DA concentrations using differential pulse voltammetry. The detection limits (3σ) were 9.0 × 10−5 M for AA and 9.0 × 10−5 M for DA.  相似文献   

5.
The effect of glycine, α-alanine, and asparagine acid on the kinetics of anode processes occurring for copper in alkali electrolytes is studied. The experiments are performed in a background solution of 1 × 10−2 M NaOH (pH 12). The concentrations of glycine and α-alanine are varied in the range of 1 × 10−6-1 × 10−1 M, and the concentration of asparagine acid is varied in the range of 1 × 10−5-1 × 10−3 M. All amino acids used in this work have been found to stimulate anode oxidation of passivated copper, initiating local activation (LA) of the metal. Depending on the nature of amino acids, this effect occurs in various concentration ranges: for glycine and α-alanine, it takes place at c= 5 × 10−3-2 × 10−2 M, while for asparagine acid, at c = 1 × 10−5−1 × 10−3 M. In addition to this general regularity, several individual peculiarities have been revealed: in the systems containing a monobasic amino acid additive, local activation occurs at E = 0.10–0.20 V, while in the presence of a dibasic amino acid, the local activation is observed at two potentials, E LA1 = 0.20–0.30 V and = E LA2 = 0.80–0.90 V, separated by the repassivation region.  相似文献   

6.
The electrochemical behaviour of the anticancer herbal drug shikonin was investigated at glassy carbon electrode in 0.16 M HAc-NaAc (20% ethanol, pH 3.98) buffer solution using cyclic voltammetry, square-wave voltammetry and chronocoulometry. Shikonin gives a pair of quasi-reversible redox peaks at potentials of E pc = 0.698 V and E pa =0.632 V by absorption-controlled process at a scan rate of 100 mV/s. The electrode process dynamics parameters (saturated adsorptive amount Γ, charge transfer coefficient α, and apparent rate constant K s) and reaction mechanism were also investigated with result of two electrons and two hydrogen ions participating in electrode reaction. The experimental conditions were optimized for the determination of shikonin and the square-wave anodic peak currents were linearly related to the shikonin concentrations in the range from 2.08 × 10−8 to 1.82 × 10−6 M with correlation coefficient of 0.998 and detection limit of 7.8 × 10−9 M. Using the established method without pretreatment and pre-separation, shikonin in herbal drug Gromwell Root was determined with satisfactory result.  相似文献   

7.
Functionalized polypyrrole films were prepared by incorporation of Fe(CN)6 3− as doping anion during the electropolymerization of pyrrole at a glassy carbon electrode from aqueous solution. The electrochemical behavior of the Fe(CN)6 3−/Fe(CN)6 4− redox couple in polypyrrole was studied by cyclic voltammetry. An obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole film with ferrocyanide incorporated was demonstrated by oxidation of ascorbic acid at the optimized pH of 4 in a glycine buffer. The catalytic effect for mediated oxidation of ascorbic acid was 300 mV and the bimolecular rate constant determined for surface coverage of 4.5 × 10−8 M cm−2 using rotating disk electrode voltammetry was 86 M−1 s−1. Furthermore, the catalytic oxidation current was linearly dependent on ascorbic acid concentration in the range 5 × 10−4–1.6 × 10−2 M with a correlation coefficient of 0.996. The plot of i p versus v 1/2 confirms the diffusion nature of the peak current i p. Received: 12 April 1999 / Accepted: 25 May 1999  相似文献   

8.
Electrochemistry of hydrofullerene C60H36 was studied by cyclic voltammetry in THF and CH2Cl2 in the −47–14 °C temperature range. Hydrofullerene undergoes reversible one-electron reduction to form a radical anion in THF (E 0=−3.18 V (Fc0/Fc+), Fc=ferrocene) and irreversible one-electron oxidation in CH2Cl2 (E p a =1.22 V (Fc0/Fc+)). The reduction potential was used to estimate electron affinity of hydrofullerene as EA=−0.33 eV. It was suggested that C60H36 is an isomer withT-symmetry in which 12 double bonds form four isolated benzenoid rings located in vertices of an imaginary inscribed tetrahedron on the molecular surface. For hydrofullerene, the “electrochemical gap” is an analog of the energy gap (HOMO−LUMO), equal to (E OxE Red)=4.4 V, and indicates that C60H36 is a sufficiently “hard” molecule with a low reactivity in redox reactions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2083–2087, November, 1999.  相似文献   

9.
Aminylferrocene is successfully immobilized on nanosized gold colloid particles associated with a 1,4-benzenedimethanethiol monolayer on a gold electrode surface and characterized by cyclic voltammograms and electrochemical impedance spectroscopy. In a pH 7.0 phosphate buffer solution, the formal potential (E 0’) of Fc is 0.432 V (SCE), and the apparent surface electron-transfer rate constant is 0.89 s. The immobilized Fc gives an excellent electrocatalytic response to the terbutaline oxidation. The catalytic-current response of differential pulse voltammograms increases linearly with the terbutaline concentration from 1.75 × 10−7 to 5.62 × 10−4 mol/l. The detection limit is 2.30 × 10−8 mol/l. The determination of terbutaline in a tablet dosage is satisfactory. The method is simple, quick, and sensitive. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 8, pp. 969–974. The text was submitted by the authors in English.  相似文献   

10.
The underpotential deposition of copper onto polycrystalline rhodium was studied as a function of the degree of oxidation of the electrode surface in acidic media using potentiodynamic techniques. Surface oxidation of the rhodium electrode was carried out using a triangular sweep potential between E L (lower limit) and E U (upper limit: 0.94≤E U≤1.4 V). Cu electrodeposition was performed at the same time as the total or partial reduction of the oxidized species. The surface oxides produced at E U≤1.09 V were completely reduced during Cu electrodeposition. In this case, the potentiodynamic I-E patterns for oxidative dissolution of Cu were characterized by three anodic peaks located at 0.41 V (peak I), 0.47 V (peak II) and 0.59 V (peak III) and the coverage degree by Cu, θCu, was on the order of a monolayer. Surface oxides produced at E U>1.09 V were partially reduced during the copper electrodeposition. In this case, the I-E profiles exhibited only two anodic peaks (II and III) and θCu was <1. The Rh-oxygen species that remain on the electrode surface block the active sites of lower energy and modify the binding energy of strongly adsorbed Cu. Electronic Publication  相似文献   

11.
A simple method was used to fabricate flavin adenine dinucleotide (FAD)/NiOx nanocomposite on the surface of glassy carbon (GC) electrode. Cyclic voltammetry technique was applied for deposition nickel oxide nanostructures onto GC surface. Owing to its high biocompatibility and large surface area of nickel oxide nanomaterials with immersing the GC/NiOx-modified electrode into FAD solution for a short period of time, 10–140 s, a stable thin layer of the FAD molecules immobilized onto electrode surface. The FAD/NiOx films exhibited a pair of well-defined, stable, and nearly reversible CV peaks at wide pH range (2–10). The formal potential of adsorbed FAD onto nickel oxide nanoparticles film, E o′ vs. Ag/AgCl reference electrode is −0.44 V in pH 7 buffer solutions was similar to dissolved FAD and changed linearly with a slope of 58.6 mV/pH in the pH range 2–10. The surface coverage and heterogeneous electron transfer rate constant (k s ) of FAD immobilized on NiOx film glassy carbon electrode are 4.66 × 10−11 mol cm−2 and 63 ± 0.1 s−1, indicating the high loading ability of the nickel oxide nanoparticles and great facilitation of the electron transfer between FAD and nickel oxide nanoparticles. FAD/NiOx nanocomposite-modified GC electrode shows excellent electrocatalytic activity toward S2O82− reduction at reduced overpotential. Furthermore, rotated modified electrode illustrates good analytical performance for amperometric detection of S2O82−. Under optimized condition, the concentration calibration range, detection limit, and sensitivity were 3 μM–1.5 mM, 0.38 μM and 16.6 nA/μM, respectively.  相似文献   

12.
New mononuclear and dinuclear complexes [3-hydroxyethyl-1,3,5,8,11pentaazacyclotridecane]copper(II) (1)/nickel(II) (2) perchlorate and O,O ethane bridged bis-copper(II) (3)/nickel(II) (4) macrocycles have been synthesized and characterized by various spectroscopic techniques, viz. i.r., n.m.r., e.p.r., u.v.–vis. and conductance measurements. Spectral data and conductance measurements reveal that all the complexes are consistent with square-planar geometry and are ionic in nature. The catalytic activity of the dinuclear Cu(II) complex (3) in the presence of pyrocatechol was determined spectrometrically by monitoring the increase of the o-benzoquinone characteristic absorption band at 25,000 cm−1 with respect to time in DMF saturated with molecular oxygen. The kinetic parameters Vmax (2.8×10−3 M s−1) and KM (1.4×10−3 mm) have been determined by Michaelis–Menten method. Electrochemistry of the dinuclear Cu(II) complex has been studied in the presence of molecular oxygen with pyrocatechol and without pyrocatechol at a scan rate of 0.1 V s−1 by cyclic voltammetry. On addition of pyrocatechol, complex shows a shift in Epc, Epa and E1/2 values indicating the oxidation of substrate (pyrocatechol).  相似文献   

13.
A simple, rapid, sensitive, and accurate method for simultaneous electrochemical determination of procaine and its metabolite (p-aminobenzoic acid, PABA) for pharmaceutical quality control and pharmacokinetic research was developed using a graphite paste electrode. The differential pulse voltammetric results revealed that procaine and p-aminobenzoic acid, respectively, showed well-defined anodic oxidation peaks on a carbon paste electrode with a current peak separation of 155 mV at a scan rate of 100 mV s−1. This well separation of the current peaks for these two compounds in voltammetry enables us to simultaneously determine them. Good linearity (r > 0.998) between oxidation peak current and concentration was obtained in the range of 5.0 × 10−7–5.0 × 10−5 M for procaine and 5.0 × 10−7–2.0 × 10−5 M for PABA in pH 4.50 acetate buffer solution. The detection limit for both analytes is 5 × 10−8 M (S/N = 3:1). The present voltammetric method has been successfully used to determine trace p-aminobenzoic acid in procaine hydrochloride injection and procaine in plasma with a linear relationship of current to its concentration ranging from 1.0 × 10−6 to 5.0 × 10−5 M (correlation coefficient of 0.9981) with a low detection limit of 5.0 × 10−7 M (S/N = 3:1). This validated method is promising to the study of pharmacokinetics in Sprague–Dawley rat and rabbit plasma after an intravenous administration of procaine hydrochloride injection.  相似文献   

14.
《Electroanalysis》2005,17(19):1734-1739
In the present study anodic oxidation of iridium layer formed thermally on a gold‐sputtered quartz crystal electrode has been investigated by electrochemical quartz crystal microgravimetry (EQCM) in the solutions of 0.5 M H2SO4 and 0.1 M KOH. The emphasis here has been put on the microgravimetric behavior of iridium as a metal, because a few previous EQCM studies reported in literature have been devoted to iridium oxide films (IROFs). The objective pursued here has been to elucidate the nature of the main voltammetric peaks, which occur at different ranges of potential in the solutions investigated. It has been found that anodic oxidation of iridium electrode in 0.5 M H2SO4 and 0.1 M KOH solutions is accompanied by irregular fluctuations of the electrode mass at 0.4 V<E<0.8 V followed by regular increase in mass at 0.8 V<E<1.2 V. The cathodic process initially, at 1.2 V>E>0.9 V, proceeds without any or with slight increase in electrode mass, whereas at E<0.8 V a regular decrease in mass is observed. It has been found that mass to charge ratio characterizing the processes of interest is 2 to 3 g F?1in acidic medium, whereas in the case of alkaline one it is 4 to 6 g F?1. The main pair of peaks seen in the voltammograms of Ir electrode in alkaline medium at E<0.8 V is attributable to redox transition Ir(0)→Ir(III), whereas those observed in the case of acidic medium at E>0.8 V should be related to the redox process Ir(0)→Ir(IV) going via intermediate stage of Ir(III) formation. As a consequence of these redox transitions, the gel‐like surface layer consisting of Ir(III) or Ir(IV) hydrous oxides forms on the electrode surface.  相似文献   

15.
A new p-tetra-butyl calix [6] arene-L-Histidine chemically modified glassy carbon electrode (BCH/GCE) has been proposed for simultaneous investigation and determination of epinephrine (Ep) and serotonin (5-HT) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). In potassium dihydrogen phosphate-borax (PDPB) buffer solution (pH 5.8), the anodic peaks of Ep and 5-HT were observed at 0.27 and 0.45 V, respectively, with E up to 180 mV. The peak currents on the DP voltammogram are in a linear relationship with the concentrations of Ep in the range of 1.0 × 10−6−1.30 × 10−4 M in the presence of 1.0 × 10−4 M 5-HT. A linear relationship was similarly found for 5-HT in the range 1.0 × 10−6− 1.40 × 10−4 M in the presence of 1.0 × 10−4 M Ep. It is found that Ep and 5-HT could be simultaneously determined with good sensitivity in the presence of 1.0 × 10−3 M ascorbic acid (AA). The developed method has been applied to the determination of Ep and 5-HT in synthetic samples with satisfactory results. The text was submitted by the authors in English.  相似文献   

16.
A mesoporous TiO2 (meso-TiO2) was synthesized, and used to prepare modified carbon paste electrode (CPE). The electrochemical sensing properties were characterized using K3[Fe(CN)6], showing that meso-TiO2 modified CPE possesses larger surface area and higher electron transfer rate. The electrochemical behavior of p-cresol was investigated. At the meso-TiO2 modified CPE, the oxidation peak current of p-cresol remarkably increases, and the oxidation peak potential shifts negatively, suggesting that meso- TiO2 exhibits highly efficient catalytic activity to the oxidation of p-cresol. Based on this, a sensitive, rapid and convenient electrochemical method was developed for the detection of p-cresol. The linear range is from 1.5 × 10−7 and 2.0 × 10−5 mol l−1, and the limit of detection is as low as 8.0 × 10−8 mol l−1. Finally, the new method was successfully used to determine p-cresol in water samples.  相似文献   

17.
Direct electrochemistry of hemoglobin (Hb) immobilized on the dihexadecyl hydrogen phosphate (DHP)/single-wall carbon nanotubes (SWNTs) film modified Au electrode is investigated. The immobilized Hb displays a couple of stable and well-defined redox peaks, whose formal potential (E 0) is −0.434 V (SCE) in a phosphate buffer solution of pH 7.0. The formal potential of the heme Fe(III)/Fe(II) couple shifts negatively linearly with increased pH with a slope of −42.3 mV/pH, denoting that one electron transfer accompanies single proton transportation. Both SWNTs and DHP can accelerate the electron transfer between Hb and the electrode. Using DHP/Hb/SWNTs-film-modified Au electrode, the interaction between Hb and taxol is investigated. The voltammetric response of Hb decreases with increasing concentration of taxol. The peak currents decreases proportionally to the taxol concentration at 1.4 × 10−5 to 1.3 × 10−4 M, the linear regression equation being Δi (A) = 2.9603 − 0.4225 ctaxol (M), with a correlation coefficient (r) 0.9985, and the detection limit 6.95 × 10−6 M (signal-to-noise ratio of three). Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 801–807. The text was submitted by the authors in English.  相似文献   

18.
The electrocatalytic oxidation of quinine sulfate (QS) was investigated at a glassy carbon electrode, modified by a gel containing multiwall carbon nanotubes (MWCNTs) and room-temperature ionic liquid of 1-Butyl-3-methylimidazolium hexafluorophate (BMIMPF6) in 0.10 M of phosphate buffer solution (PBS, pH 6.8). It was found that an irreversible anodic oxidation peak of QS with E pa as 0.99 V appeared at MWCNTs-RTIL/glassy carbon electrode (GCE). The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participation. Furthermore, the charge-transfer coefficient (α), diffusion coefficient (D), and electrode reaction rate constant (k f) of QS were found to be 0.87, 7.89 × 10−3 cm2⋅s−1 and 3.43 × 10−2 s−1, respectively. Under optimized conditions, linear calibration curves were obtained over the QS concentration range 3.0 × 10−6 to 1.0 × 10−4 M by square wave voltammetry, and the detection limit was found to be 0.44 μM based on the signal-to-noise ratio of 3. In addition, the novel MWCNTs-RTIL/GCE was characterized by the electrochemical impedance spectroscopy and the proposed method has been successfully applied in the electrochemical quantitative determination of quinine content in commercial injection samples and the determination results could meet the requirement.  相似文献   

19.
A square wave adsorptive stripping voltammetric (SWAdSV) method was developed for the determination of proflavine. The electrochemical behaviour of proflavine was investigated by cyclic (CV) and square wave voltammetry (SWV) at the hanging mercury drop electrode (HMDE) and carbon paste electrode (CPE). Different parameters were tested to optimize the conditions of the determination. Better results were obtained by square wave voltammetry using CPE where two oxidation and a reduction peak, appeared, at 0.19, 0.94 and 0.20 V, respectively. The peak at 0.19 V is quasi-reversible and deposition dependent. Linearity was observed in the range of (0.2–23.4) × 10−8 M (r = 0.998) during the anodic scan and in the range of (1.17–117) × 10−8 M (r = 0.999) during the cathodic scan. The second peak at 0.94 V is irreversible and deposition independent. The linearity of this peak was observed in the range of (1.29–11.7) × 10−8 M (r = 0.998). The method was applied to the analysis of bovine serum and gave satisfactory results. Correspondence: S. Th. Girousi, Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124, Greece  相似文献   

20.
A carbon ionic liquid electrode (CILE) was fabricated by mixing N-butylpyridinium hexafluoro-phosphate (BPPF 6 ) with graphite powder and further used for the investigation on the electrochemical behavior of L-tryptophan (Trp). The fabricated CILE showed good conductivity, inherent electrocatalytic ability and strong promotion to the electron transfer of Trp. On the CILE, an irreversible oxidation peak appeared at 0.948 V (vs. saturated calomel reference electrode). For 5.0 × 10−5 M Trp the oxidation peak current increased about 5 times and the oxidation peak potential decreased on 0.092 V compared to carbon paste electrode. The results indicated that an electrocatalytic reaction occurred on CILE. The conditions for the electrochemical detection were optimized and the electrochemical parameters of Trp on CILE were carefully investigated. Under the selected conditions, the oxidation peak current showed linear relationship with Trp concentration in the range of 8.0 × 10−6 ∼1.0 × 10−3 M for cyclic voltammetry and the detection limit was estimated as 4.8 × 10−6 M (3σ). The interferences of other amino acids or metal ions on the determination were tested and the proposed method was successfully applied to the synthetic sample analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号