首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The synthesis of well‐defined poly(methyl methacrylate)‐block‐poly(ethylene oxide) (PMMA‐b‐PEO) dibock copolymer through anionic polymerization using monohydroxy telechelic PMMA as macroinitiator is described. Living anionic polymerization of methyl methacrylate was performed using initiators derived from the adduct of diphenylethylene and a suitable alkyllithium, either of which contains a hydroxyl group protected with tert‐butyldimethylsilyl moiety in tetrahydrofuran (THF) at ?78 °C in the presence of LiClO4. The synthesized telechelic PMMAs had good control of molecular weight with narrow molecular weight distribution (MWD). The 1H NMR and MALDI‐TOF MS analysis confirmed quantitative functionalization of chain‐ends. Block copolymerization of ethylene oxide was carried out using the terminal hydroxyl group of PMMA as initiator in the presence of potassium counter ion in THF at 35 °C. The PMMA‐b‐PEO diblock copolymers had moderate control of molecular weight with narrow MWD. The 1H NMR results confirm the absence of trans‐esterification reaction of propagating PEO anions onto the ester pendants of PMMA. The micellation behavior of PMMA‐b‐PEO diblock copolymer was examined in water using 1H NMR and dynamic light scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2132–2144, 2008  相似文献   

2.
Comb‐shaped graft copolymers with poly(methyl methacrylate) as a handle were synthesized by the macromonomer technique in two steps. First, polytetrahydrofuran acrylate (A‐PTHF), prepared by the living cationic ring‐opening polymerization of tetrahydrofuran, underwent homopolymerization with 1‐(ethoxycarbonyl)prop‐1‐yl dithiobenzoate as an initiator under 60Co γ irradiation at room temperature; Second, the handle of the comb‐shaped copolymers was prepared by the block copolymerization of methyl methacrylate with P(A‐PTHF) as a macroinitiator under 60Co γ irradiation. The two‐step polymerizations were proved to be controlled with the following evidence: the straight line of ln[M]0/[M] versus the polymerization time, the linear increase in the number‐average molecular weight with the conversion, and the relatively narrow molecular weight distribution. The structures of the P(A‐PTHF) and final comb‐shaped copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3367–3378, 2002  相似文献   

3.
Novel multigraft copolymers of poly(methyl methacrylate‐graft‐polystyrene) (PMMA‐g‐PS) in which the number of graft PS side chains was varied were prepared by a subsequent two‐step living radical copolymerization approach. A polymerizable 4‐vinylbezenyl 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) monomer (STEMPO), which functioned as both a monomer and a radical trapper, was placed in a low‐temperature atom transfer radical polymerization (60°C) process of methyl methacrylate with ethyl 2‐bromopronionate (EPNBr) as an initiator to gain ethyl pronionate‐capped prepolymers with TEMPO moieties, PMMA‐STEMPOs. The number of TEMPO moieties grafted on the PMMA backbone could be designed by varying STEMPO/EPNBr, for example, the ratios of 1/2, 2/3, or 3/4 gained one, two, or three graft TEMPO moieties, respectively. The resulting prepolymers either as a macromolecular initiator or a trapper copolymerized with styrene in the control of stable free‐radical polymerization at an elevated temperature (120 °C), producing the corresponding multigraft copolymers, PMMA‐g‐PSs. The nitroxyl‐functionalized PMMA prepolymers produced a relatively high initiation efficiency (>0.8) as a result of the stereohindrance and slow diffusion of TEMPO moieties connected on the long PMMA backbone. The polymerization kinetics in two processes showed a living radical polymerization characteristic. The molecular structures of these prepolymers and graft copolymers were well characterized by combining Fourier transform infrared spectroscopy, gel permeation chromatography, chemical element analysis, and 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1876–1884, 2002  相似文献   

4.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

5.
The crystalline structure and morphology of compatible mixtures of poly(tetrahydrofuran‐methyl methacrylate) diblock copolymers (PTHF‐b‐PMMA) with a polytetrahydrofuran homopolymer (PTHF) were studied with synchrotron X‐rays. Wide‐angle diffraction was used to study the crystalline structures in a confined lamellar region with a PTHF thickness ranging from 12.2 to 19.5 nm, and in a PTHF matrix with an interface distance between the PMMA cylinders ranging from 17 to 22 nm. As the above thickness values are around the long period (ca. 17 nm) of PTHF homopolymer under the crystallization condition used, the crystalline structure has been found to be very sensitive to the average thickness of the PTHF phase. The changes in the diffraction patterns with changing PTHF homopolymer content suggested a chain folding model in confined PTHF lamellae with the PTHF fiber axes being perpendicular to the thick PTHF lamella. In the case of hexagonally packed cylindrical PMMA microdomains with an interface distance ranging from 12 to 16 nm, the effects of PMMA cylinders on the crystallization morphology of PTHF in the PTHF matrix, and the effects of the PTHF crystallization on the hexagonally packed structure of PMMA cylinders were also studied. It is shown that only when the interdistance of two neighboring PMMA cylinders is comparable with the long period of the pure PTHF homopolymer, ordered PTHF stacks can be formed in the PTHF matrix. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 779–792, 1999  相似文献   

6.
Communication: A diblock copolymer consisting of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) with hydroxyl group at one end is prepared by successive charge transfer polymerization (CTP) under UV irradiation at room temperature using ethanolamine and benzophenone as a binary initiation system. The diblock copolymer PMMA‐b‐PVAc could be selectively hydrolyzed to the block copolymer of poly(methyl methacrylate) and poly(vinyl alcohol) (PVA) using sodium ethoxide as the catalyst. Both copolymers, PMMA‐b‐PVAc and PMMA‐b‐PVA, are characterized in detail by means of FTIR and 1H NMR spectroscopy, and GPC. The effect of the solvent on CTP and the kinetics of CTP are discussed.  相似文献   

7.
The miktoarm ABC star copolymer with three different branches, polystyrene (PS), poly(1,3‐dioxepane) (PDOP), and poly(methyl methacrylate) (PMMA), was successfully prepared. PS with two transfer groups, hydroxyl and dithiobenzoate groups [PS‐HECA‐SC(S)Ph], was synthesized by the reaction of a dithiobenzoate group at the end of PS with hydroxyethylene cinnamate (HECA) in tetrahydrofuran solution. Then, the cationic ring‐opening polymerization of 1,3‐dioxepane was initiated by triflic acid in the presence of PS‐HECA‐SC(S)Ph and diblock copolymer, PS‐PDOP, was formed. Finally, the diblock copolymer with the dithiobenzoate group situated between the two blocks was used in the reversible addition–fragmentation transfer (RAFT) process of methyl methacrylate (MMA). The miktoarm ABC star copolymer S(PS)(PDOP)(PMMA) was characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1243–1250, 2003  相似文献   

8.
阴离子聚合法合成PMMA-b-PMTFPS嵌段共聚物   总被引:3,自引:1,他引:2  
以含缩醛官能团的有机锂为引发剂, 将甲基丙烯酸甲酯(MMA)与含氟硅氧烷单体1,3,5-三甲基-1,3,5-三(3',3',3'-三氟丙基)环三硅氧烷(F3)阴离子嵌段共聚, 获得了窄分子量分布的聚甲基丙烯酸甲酯-b-聚[甲基(3,3,3-三氟丙基)硅氧烷](PMMA-b-PMTFPS)嵌段共聚物, 并用GPC, 1H NMR, FTIR和DSC对嵌段共聚物进行了表征. 研究结果表明, 在THF中利用PMMA-OLi对F3进行阴离子开环聚合时, 单体F3浓度的选择对提高嵌段共聚物产率至关重要.  相似文献   

9.
The synthesis of polystyrene‐b‐poly(methyl methacrylate) diblock copolymers with a luminescent ruthenium(II) tris(bipyridine) [Ru(bpy)3] complex at the block junction is described. The macroligand precursor, polystyrene bipyridine‐poly(methyl methacrylate) [bpy(PS–H)(PMMA)], was synthesized via the atom transfer radical polymerization of styrene and methyl methacrylate from two independent, sequentially activated initiating sites. Both polymerization steps resulted in the growth of blocks with sizes consistent with monomer loading and narrow molecular weight distributions (i.e., polydispersity index < 1.3). Subsequent reactions with ruthenium(II) bis(bipyridine) dichloride [Ru(bpy)2Cl2] in the presence of Ag+ generated the ruthenium tris(bipyridine)‐centered diblock, which is of interest for the imaging of block copolymer microstructures and for incorporation into new photonic materials. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4250–4255, 2002  相似文献   

10.
In this research, poly(methyl methacrylate)‐b‐poly(butyl acrylate) (PMMA‐b‐PBA) block copolymers were prepared by 1,1‐diphenylethene (DPE) controlled radical polymerization in homogeneous and miniemulsion systems. First, monomer methyl methacrylate (MMA), initiator 2,2′‐azobisisobutyronitrile (AIBN) and a control agent DPE were bulk polymerized to form the DPE‐containing PMMA macroinitiator. Then the DPE‐containing PMMA was heated in the presence of a second monomer BA, the block copolymer was synthesized successfully. The effects of solvent and polymerization methods (homogeneous polymerization or miniemulsion polymerization) on the reaction rate, controlled living character, molecular weight (Mn) and molecular weight distribution (PDI) of polymers throughout the polymerization were studied and discussed. The results showed that, increasing the amounts of solvent reduced the reaction rate and viscosity of the polymerization system. It allowed more activation–deactivation cycles to occur at a given conversion thus better controlled living character and narrower molecular weight distribution of polymers were demonstrated throughout the polymerization. Furthermore, the polymerization carried out in miniemulsion system exhibited higher reaction rate and better controlled living character than those in homogeneous system. It was attributed to the compartmentalization of growing radicals and the enhanced deactivation reaction of DPE controlled radical polymerization in miniemulsified droplets. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4435–4445, 2009  相似文献   

11.
The differential microemulsion polymerization technique was used to synthesize the nanoparticles of glycidyl-functionalized poly(methyl methacrylate) or PMMA via a two-step process, by which the amount of sodium dodecyl sulfate (SDS) surfactant required was 1/217 of the monomer amount by weight and the surfactant/water ratio could be as low as 1/600. These surfactant levels are extremely low in comparison with those used in a conventional microemulsion polymerization system. The glycidyl-functionalized PMMA nanoparticles are composed of nanosized cores of high molecular weight PMMA and nano-thin shells of the random copolymer poly[(methyl methacrylate)-ran-(glycidyl methacrylate)]. The particle sizes were about 50 nm. The ratios of the glycidyl methacrylate in the glycidyl-functionalized PMMA were achieved at about 5–26 wt.%, depending on the reaction conditions. The molecular weight of glycidyl-functionalized PMMA was in the range of about 1 × 106 to 3 × 106 g mol−1. The solid content of glycidyl-functionalized PMMA increased when the amount of added glycidyl methacrylate was increased. The glycidyl-functionalized polymer on the surface of nano-seed PMMA nanoparticles was a random copolymer which was confirmed by 1H-NMR spectroscopy. The amounts of functionalization were investigated by the titration of the glycidyl functional group. The structure of the glycidyl-functionalized PMMA nanoparticles was investigated by means of TEM. The glycidyl-functionalized PMMA has two regions of Tg which are at around 90 °C and 125 °C, respectively, of which the first one was attributed to the poly[(methyl methacrylate)-ran-(glycidyl methacrylate)] and the second one was due to the PMMA. A core/shell structure of the glycidyl-functionalized PMMA latex nanoparticles was observed.  相似文献   

12.
In this contribution, we reported a facile synthesis of poly(methyl methacrylate)‐block‐poly(N‐vinyl pyrrolidone) (PMMA‐b‐PVPy) diblock copolymers via sequential radical polymerizations mediated by isopropylxanthic disulfide (DIP). It was found that the radical polymerization of N‐vinyl pyrrolidone (NVP) mediated by DIP was in a controlled and living manner. In contrast, the polymerization of methyl methacrylate mediated by DIP displayed the behavior of telomerization, affording xanthate‐terminated PMMA with a good control of molecular weights while the conversion of monomer was not very high. The xanthate‐terminated PMMA can be successfully used as the macromolecular chain transfer agent for the polymerization of NVP via RAFT/MADIX process and thus PMMA‐b‐PVPy diblock copolymers can be successfully synthesized via sequential radical polymerization mediated by isopropylxanthic disulfide. One of these diblock copolymers was incorporated into polybenzoxazine and the nanostructured thermosets were obtained as evidenced by transmission electron microscopy, small angle X‐ray scattering, and dynamic mechanical thermal analysis. The formation of nanostructures in polybenzoxazine thermosets was ascribed to a reaction‐induced microphase separation mechanism. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 952–962  相似文献   

13.
Polymer nanoporous materials with periodic cylindrical holes were fabricated from microphase‐separated structure of diblock copolymers consisting of a radiation‐crosslinking polymer and a radiation‐degrading polymer through simultaneous crosslinking and degradation by γ‐irradiation. A polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA) diblock copolymer film that self‐assembles into hexagonally packed poly(methyl methacrylate) cylinders in polybutadiene matrix was irradiated with γ‐rays. Solubility test, IR spectroscopy, and TEM and SEM observations for this copolymer film in comparison with a polystyrene‐block‐poly(methyl methacrylate) diblock copolymer film revealed that poly(methyl methacrylate) domains were removed by γ‐irradiation and succeeding solvent washing to form cylindrical holes within polybutadiene matrix, which was rigidified by radiation crosslinking. Thus, it was demonstrated that nanoporous materials can be prepared by γ‐irradiation, maintaining the original structure of PB‐b‐PMMA diblock copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5916–5922, 2007  相似文献   

14.
Poly[2‐(3‐nitrocarbazolyl)ethyl methacrylate] (poly(NCzMA)) with controlled molecular weight and narrow molecular weight distribution was successfully synthesized using (methyl methacryloyl)potassium (MMA) as a weak initiator in the presence of diethylzinc (Et2Zn) in THF at –78°C. Et2Zn acted both as an additive for the coordination with enolate anion and nitro group and as a scavenger to remove impurities. Block copolymers PMMA‐block‐poly(NCzMA)‐block‐PMMA and poly(NCzMA)‐block‐PS‐block‐poly(NCz‐MA), were also synthesized quantitatively (PMMA: poly(methyl methacrylate), PS: polystyrene). The results indicate that Et2Zn can be used to synthesize the polymers of solid, nitro group‐containing methacrylate monomers by anionic polymerization in THF.  相似文献   

15.
A diblock copolymer, poly(methyl methacrylate)-b-polystyrene (PMMA-b-PS), was grafted onto the surface of nano-titania (nano-TiO2) successfully via reversible addition-fragmentation chain transfer (RAFT) polymerization. The surface of TiO2 nanoparticles was modified initially by attaching dithioester groups to the surface using silane coupling agent 3-(chloropropyl)triethoxy silane and sodium ethyl xanthate. The polymerization of methyl methacrylate and styrene were then initiated and propagated on the TiO2 surface by RAFT polymerization. The resulting composite nanoparticles were characterized by means of XPS, FT-IR, 1H NMR and TGA. The results confirmed the successful grafting of poly(methyl methacrylate) (PMMA) and diblock copolymer chains onto the surface of TiO2. The amount of PMMA grafted onto the TiO2 surface increased with the polymerization time. Moreover, the kinetic studies revealed that the ln([M]0/[M]), where [M]0 is the initial and [M] is the time dependent monomer concentrations, increased linearly with the polymerization time, indicating the living characteristics of the RAFT polymerization.  相似文献   

16.
Polystyrene-graft-poly(methyl methacrylate) (PSt-graft-PMMA) was prepared by the nitroxide-mediated photo-living radical polymerization using poly(4-vinylbenzyl-4-oxy-2,2,6,6-tetramethylpiperidine-1-oxyl-ran-styrene) (P(VTEMPO-r-St)) as the macromediator. The bulk polymerization of methyl methacrylate was performed at room temperature by irradiation using a high-pressure mercury lamp with P(VTEMPO-r-St) as the mediator having the molar ratio of VTEMPO/St unit = 0.40/0.60 and the molecular weight of Mn = 21,700 and the (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator in the presence of the (4-tert-butylphenyl)diphenylsulfonium triflate as the photo-acid generator. The polymerization proceeded via a controlled polymerization mechanism because both the first-order time-conversion plots and the conversion-molecular weight plots showed linear increases. It was found that all the VTEMPO units supported the controlled PMMA chains by 1H NMR analysis because the molar ratio of the VTEMPO at the terminal chain end to the 1-cyano-3-methoxy-1,3-dimethylbutyl group at the initiation chain end of the PMMA was unity.  相似文献   

17.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998  相似文献   

18.
两亲性或双亲水性嵌段共聚物在许多领域有重要的应用 ,如用作乳化剂 [1] 、结晶改性剂 [2~ 4 ] 和金属胶体模板物 [5] 等 .借助于活性聚合反应 (阴离子型、阳离子型、基团转移和自由基等 ) ,通过相继加入单体的方式 ,制备出了大量的嵌段共聚物 [6~ 9] ,但这种方法有一定局限性 .对于四氢呋喃与各种 (甲基 )丙烯酸酯的两亲性共聚物的合成 ,由于前者只能进行阳离子型开环聚合 ,而后者则只能进行阴离子聚合和自由基聚合 ,因此难以通过上述方法制得嵌段共聚物 .本文报道了通过 PTHF阳离子型活性链与 PMMA阴离子型活性链偶合反应制备 PMMA…  相似文献   

19.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

20.
Living anionic surface‐initiated polymerization on flat gold substrates has been conducted to create uniform homopolymer and diblock copolymer brushes. A 1,1‐diphenylethylene (DPE) self‐assembled monolayer was used as the immobilized precursor initiator. n‐BuLi was used to activate the DPE in tetrahydrofuran at –78 °C to initiate the polymerization of different monomers (styrene, isoprene, ethylene oxide, and methyl methacrylate). Poly(styrene) (PS) and poly(ethylene oxide) (PEO) in particular were first investigated as grafted homopolymers, followed by their copolymers, including poly(isoprene)‐b‐poly(methylmethacrylate) (PI‐b‐PMMA). A combined approach of spectroscopic (Fourier transform infrared spectroscopy, surface plasmon spectroscopy, ellipsometry, X‐ray photoelectron spectroscopy) and microscopic (atomic force microscopy) surface analysis was used to investigate the formation of the polymer brushes in polar solvent media. The chemical nature of the outermost layer of these brushes was studied by water contact angle measurements. The effect of the experimental conditions (solvent, temperature, initiator concentration) on the surface properties of the polymer brushes was also investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 769–782, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号