首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Given r real functions F 1(x),...,F r (x) and an integer p between 1 and r, the Low Order-Value Optimization problem (LOVO) consists of minimizing the sum of the functions that take the p smaller values. If (y 1,...,y r ) is a vector of data and T(x, t i ) is the predicted value of the observation i with the parameters , it is natural to define F i (x) =  (T(x, t i ) − y i )2 (the quadratic error in observation i under the parameters x). When pr this LOVO problem coincides with the classical nonlinear least-squares problem. However, the interesting situation is when p is smaller than r. In that case, the solution of LOVO allows one to discard the influence of an estimated number of outliers. Thus, the LOVO problem is an interesting tool for robust estimation of parameters of nonlinear models. When pr the LOVO problem may be used to find hidden structures in data sets. One of the most successful applications includes the Protein Alignment problem. Fully documented algorithms for this application are available at www.ime.unicamp.br/~martinez/lovoalign. In this paper optimality conditions are discussed, algorithms for solving the LOVO problem are introduced and convergence theorems are proved. Finally, numerical experiments are presented.  相似文献   

2.
Summary Using the integral average method, we give some new oscillation criteria for the second order differential equation with damped term (a(t)Ψ(x(t))K(x'(t)))'+p(t)K(x'(t))+q(t)f(x(t))=0, t<span style='font-size:10.0pt; font-family:"Lucida Sans Unicode"'>≧t0. These results improve and generalize the oscillation criteria in<span lang=EN-US style='font-size:10.0pt;mso-ansi-language:EN-US'>[1], because they eliminate both the differentiability of p(t) and the sign of p(t), q(t). As a consequence, improvements of Sobol's type oscillation criteria are obtained.  相似文献   

3.
The unstable properties of the linear nonautonomous delay system x(t) = A(t)x(t) + B(t)x(tr(t)), with nonconstant delay r(t), are studied. It is assumed that the linear system y(t) = (A(t) + B(t))y(t) is unstable, the instability being characterized by a nonstable manifold defined from a dichotomy to this linear system. The delay r(t) is assumed to be continuous and bounded. Two kinds of results are given, those concerning conditions that do not include the properties of the delay function r(t) and the results depending on the asymptotic properties of the delay function.  相似文献   

4.
A necessary and sufficient condition is established for the equilibrium of the oscillator of half-linear type with a damping term, (?p(x))+h(t)?p(x)+?p(x)=0 to be globally asymptotically stable. The obtained criterion is given by the form of a certain growth condition of the damping coefficient h(t) and it can be applied to not only the cases of large damping and small damping but also the case of fluctuating damping. The presented result is new even in the linear cases (p=2). It is also discussed whether a solution of the half-linear differential equation (r(t)?p(x))+c(t)?p(x)=0 that converges to a non-zero value exists or not. Some suitable examples are included to illustrate the results in the present paper.  相似文献   

5.
Let it(G) denote the number of independent sets of size t in a graph G. Levit and Mandrescu have conjectured that for all bipartite G the sequence (it(G))t≥0 (the independent set sequence of G) is unimodal. We provide evidence for this conjecture by showing that this is true for almost all equibipartite graphs. Specifically, we consider the random equibipartite graph G(n,n,p), and show that for any fixed p∈(0,1] its independent set sequence is almost surely unimodal, and moreover almost surely log-concave except perhaps for a vanishingly small initial segment of the sequence. We obtain similar results for .We also consider the problem of estimating i(G)=∑t≥0it(G) for G in various families. We give a sharp upper bound on the number of independent sets in an n-vertex graph with minimum degree δ, for all fixed δ and sufficiently large n. Specifically, we show that the maximum is achieved uniquely by Kδ,nδ, the complete bipartite graph with δ vertices in one partition class and nδ in the other.We also present a weighted generalization: for all fixed x>0 and δ>0, as long as n=n(x,δ) is large enough, if G is a graph on n vertices with minimum degree δ then ∑t≥0it(G)xt≤∑t≥0it(Kδ,nδ)xt with equality if and only if G=Kδ,nδ.  相似文献   

6.
The unstable properties of the null solution of the nonautonomous delay system x′(t)=A(t)x(t)+B(t)x(tr1(t))+f(t,x(t),x(tr2(t))) are examined; the nonconstant delays r1, r2 are assumed to be continuous bounded functions. The case A=constant is reviewed, where a theorem, recalling the Perron instability theorem for ordinary differential equations, is obtained.  相似文献   

7.
This paper is motivated by the behavior of the heat diffusion kernelpt(x) on a general unimodular Lie group. Indeed, contrary to what happens in n:, thePt(x) on a general Lie group is behaving liketδ(t)/2for two possibly distinct integersδ(t), one forttending to 0 and another forttending to ∞, namelydandD. This forces us to consider a natural generalization of Lorentz spaces with different indices at “zero” and at “infinity.”  相似文献   

8.
The non-characteristic Cauchy problem for the heat equation uxx(x,t) = u1(x,t), 0 ? x ? 1, ? ∞ < t < ∞, u(0,t) = φ(t), ux(0, t) = ψ(t), ? ∞ < t < ∞ is regularizèd when approximate expressions for φ and ψ are given. Properties of the exact solution are used to obtain an explicit stability estimate.  相似文献   

9.
Bernstein-Kantorovich quasi-interpolants K^(2r-1)n(f, x) are considered and direct, inverse and equivalence theorems with Ditzian-Totik modulus of smoothness ω^2rφ(f, t)p (1 ≤ p ≤+∞) are obtained.  相似文献   

10.
We consider the existence and uniqueness of singular solutions for equations of the formu 1=div(|Du|p−2 Du)-φu), with initial datau(x, 0)=0 forx⇑0. The function ϕ is a nondecreasing real function such that ϕ(0)=0 andp>2. Under a growth condition on ϕ(u) asu→∞, (H1), we prove that for everyc>0 there exists a singular solution such thatu(x, t)→cδ(x) ast→0. This solution is unique and is called a fundamental solution. Under additional conditions, (H2) and (H3), we show the existence of very singular solutions, i.e. singular solutions such that ∫|x|≤r u(x,t)dx→∞ ast→0. Finally, for functions ϕ which behave like a power for largeu we prove that the very singular solution is unique. This is our main result. In the case ϕ(u)=u q, 1≤q, there are fundamental solutions forq<p*=p-1+(p/N) and very singular solutions forp-1<q<p*. These ranges are optimal. Dedicated to Professor Shmuel Agmon  相似文献   

11.
We study the p-system with viscosity given by vt ? ux = 0, ut + p(v)x = (k(v)ux)x + f(∫ vdx, t), with the initial and the boundary conditions (v(x, 0), u(x,0)) = (v0, u0(x)), u(0,t) = u(X,t) = 0. To describe the motion of the fluid more realistically, many equations of state, namely the function p(v) have been proposed. In this paper, we adopt Planck's equation, which is defined only for v > b(> 0) and not a monotonic function of v, and prove the global existence of the smooth solution. The essential point of the proof is to obtain the bound of v of the form b < h(T) ? v(x, t) ? H(T) < ∞ for some constants h(T) and H(T).  相似文献   

12.
Some necessary and sufficient conditions for nonoscillation are established for the second order nonlinear differential equation (r(t)y(x(t))|x(t)|p-1x(t))+c(t)f(x(t))=0,    t 3 t0,(r(t)\psi(x(t))\vert x^{\prime}(t)\vert^{p-1}x^{\prime}(t))^{\prime}+c(t)f(x(t))=0,\quad t\ge t_0,  相似文献   

13.
We show that the equation Δu = p(x)f(u) has a positive solution on R N , N ≥ 3, satisfying <artwork name="GAPA31011ei1"> <artwork name="GAPA31011ei2"> if and only if <artwork name="GAPA31011ei3"> when ψ(r) = min{p(x): |x| = r}. The nondecreasing continuous function f satisfies f(0) = 0, f (s) > 0 for s > 0, and sup s ≥ 1 f(s)/s<∞, and the nonnegative continuous function p is required to be asymptotically radial. This extends previous results which required the function p to be constant or radial.  相似文献   

14.
Aurora Llamas 《代数通讯》2013,41(5):1968-1981
We give conditions on the coefficients of a polynomial p(x) so that p(x + t) be log-concave or strictly log-concave. Several applications are given: if p(x) is a polynomial with nonnegative and nondecreasing coefficients, then p(x + t) is strictly log-concave for all t ≥ 1; for any polynomial p(x) with positive leading coefficient, there is t 0 ≥ 0 such that for any t ≥ t 0 it holds that the coefficients of p(x + t) are positive, strictly decreasing, and strictly log-concave; if p(x) is a log-concave polynomial with nonnegative coefficients and no internal zeros, then p(x + t) is strictly log-concave for all t > 0; Betti numbers of lexsegment monomial ideals are strictly log-concave.  相似文献   

15.
We consider the class of equations ut=f(uxx, ux, u) under the restriction that for all a,b,c. We first consider this equation over the unbounded domain ? ∞ < x < + ∞, and we show that very nearly every bounded nonmonotonic solution of the form u(t, x)=?(x?ct) is unstable to all nonnegative and all nonpositive perturbations. We then extend these results to nonmonotonic plane wave solutions u(t, x, y)=?(x?ct) of ut = F(uxx, uxy, ux, uy, u). Finally, we consider the class of equations ut=f(uxx, ux, u) over the bounded domain 0 < x < 1 with the boundary conditions u(t, x)=A at x=0 and u(t, x)=B at x=1, and we find the stability of all steady solutions u(t, x)=?(x).  相似文献   

16.
Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and engineering, as they appear in various engineering models. In this work, the radial basis functions method is used for finding an unknown parameter p(t) in the inverse linear parabolic partial differential equation ut = uxx + p(t)u + φ, in [0,1] × (0,T], where u is unknown while the initial condition and boundary conditions are given. Also an additional condition ∫01k(x)u(x,t)dx = E(t), 0 ≤ tT, for known functions E(t), k(x), is given as the integral overspecification over the spatial domain. The main approach is using the radial basis functions method. In this technique the exact solution is found without any mesh generation on the domain of the problem. We also discuss on the case that the overspecified condition is in the form ∫0s(t) u(x,t)dx = E(t), 0 < tT, 0 < s(t) < 1, where s and E are known functions. Some illustrative examples are presented to show efficiency of the proposed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

17.
We consider the initial boundary value problem for the nonstationary Navier-Stokes equations in a bounded three dimensional domain Ω with a sufficiently smooth compact boundary ∂Ω. These equations describe the motion of a viscous incompressible fluid contained in Ω for 0 < t < T and represent a system of nonlinear partial differential equations concerning four unknown functions: the velocity vector v = (v1 (t, x), v2 (t, x), v3 (t, x)) and the kinematic pressure function p = p(t, x) of the fluid at time t ∈ (0, T) in x ∈ Ω. The purpose of this paper is to construct a regularized Navier-Stokes system, which can be solved globally in time. Our construction is based on a coupling of the Lagrangian and the Eulerian representation of the fluid flow. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
For the equation K(t)u xx + u tt b 2 K(t)u = 0 in the rectangular domain D = “(x, t)‖ 0 < x < 1, −α < t < β”, where K(t) = (sgnt)|t| m , m > 0, and b > 0, α > 0, and β > 0 are given real numbers, we use the spectral method to obtain necessary and sufficient conditions for the unique solvability of the boundary value problem u(0, t) = u(1, t), u x (0, t) = u x (1, t), −αtβ, u(x, β) = φ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ 1.  相似文献   

19.
We study the asymptotic behaviour of the transition density of a Brownian motion in ?, killed at ∂?, where ? c is a compact non polar set. Our main result concern dimension d = 2, where we show that the transition density p ? t (x, y) behaves, for large t, as u(x)u(y)(t(log t)2)−1 for x, y∈?, where u is the unique positive harmonic function vanishing on (∂?) r , such that u(x) ∼ log ∣x∣. Received: 29 January 1999 / Revised version: 11 May 1999  相似文献   

20.
The following system considered in this paper:
x¢ = - e(t)x + f(t)fp*(y),        y¢ = - (p-1)g(t)fp(x) - (p-1)h(t)y,x' = -\,e(t)x + f(t)\phi_{p^*}(y), \qquad y'= -\,(p-1)g(t)\phi_p(x) - (p-1)h(t)y,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号