首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
The hypotheses that genotypic differences in salinity tolerance may result from (i) differences in global surface charge density or (ii) from differences in global Ca2+ binding were tested. An attempt was made to correlate the differing salinity tolerance of four melon cultivars with surface properties of vesicles extracted from the plasma membrane (PM) of their root cells. Surface characterization involved measurements of electrophoretic mobility and sorption of 45Ca2+ to the vesicles in the presence of varying concentrations of Ca2+, Na+ and Mg2+. Irrespective of salinity tolerance, vesicles from the four cultivars yielded similar ζ potentials under similar conditions, indicating similar global surface charge densities. Sorption studies with vesicles from two cultivars differing in salinity tolerance predicted independently this result of equal surface charge density. The estimated global binding affinities of Ca2+, Na+ and Mg2+ to the PM of both cultivars were the same with binding coefficients of 50, 0.8 and 9 M−1, respectively. Consequently, the hypotheses enumerated above to interpret genotypic differences in salinity toxicity are rejected. However, vesicles from the salt-resistant strain sorbed 19% more Ca2+ per given amount of protein in the membrane, indicating the existence of a larger number of negatively charged surface sites per given amount of protein and a smaller amount of protein per given area of membrane. Genotypic differences in site-specific Ca2+-binding affinity (e.g. at ion channels) remain a viable hypothesis for genotypic differences in salinity tolerance.  相似文献   

2.
A special ultrafiltration procedure in combination with photometry and atomic absorption spectrometry is described. This technique allows not only the determination of the qualitative distribution patterns of metals but also of the quantitative binding parameters of these metals to functional groups of organic compounds. The technique was applied to protein extracts of bean seeds (Phaseolus vulgaris L.). The results show that Cd and Ni have different binding mechanisms in these seeds. Both metals differ not only in their preferred binding behaviour to certain molecular size fractions but also in their potential binding sites and the binding properties. Whereas Cd in seeds from Cd-treated plants prefers binding partners with molecular weights >30 kD and <0.5 kD, Ni is preferably bound to compounds with molecular weights <5 kD. Cd exhibits a tendency to bind more selectively to sulfhydryl groups, but Ni more to non-specific binding sites. Sulfhydryl groups account for 71% of the total capacity for Cd whereas for Ni it is only 36%.Dedicated to Professor Dr. Wilhelm Fresenius on the occasion of his 80th birthday  相似文献   

3.
A microsomal enzyme preparation of chicory roots catalyses the hydroxylation of various sesquiterpene olefins in the presence of NADPH. Most of these hydroxylations take place at an isopropenyl or isopropylidene group. The number of products obtained from any of the substrates is confined to one or, in a few cases, two sesquiterpene alcohols. In addition, the conversion of (+)-valencene into nootkatone through β-nootkatol was observed. The involvement of (+)-germacrene A hydroxylase (a cytochrome P450 enzyme) and other enzymes of sesquiterpene lactone biosynthesis in these reactions is discussed.  相似文献   

4.
Mung bean seed coat (MBC) is a by-product of the mung bean processing industry. It contains a large number of phenolic compounds with therapeutic anti-inflammatory, anti-diabetic and antioxidant properties. This research aimed to investigate the optimum conditions for phenolic and flavonoid extraction from MBC by pressurized liquid extraction (PLE). Response surface methodology (RSM) was used to study the effects of temperature (80–160 °C), pressure (1200–1800 psi) and ethanol concentration (5–95%) on total phenolic content (TPC), total flavonoid content (TFC) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity (ABTS). Scale-up extraction was also performed. The optimum conditions for extraction were 160 °C, 1300 psi and 50% ethanol. Under optimum conditions, the TPC was 55.27 ± 1.14 mg gallic acid equivalent (GAE)/g MBC, TFC was 34.04 ± 0.72 mg catechin equivalent (CE)/g MBC and ABTS scavenging activity was 195.05 ± 2.29 mg trolox equivalent (TE)/g MBC. The TFC and ABTS scavenging activity of the extracts obtained at the pilot scale (10 L) was not significantly different from the laboratory scale, while TPC was significantly increased. The freeze-dried MBC extract contained vitexin and isovitexin 130.53 ± 17.89, 21.21 ± 3.22 mg/g extract, respectively. In conclusion, PLE was able to extract phenolics, flavonoids with ABTS scavenging activity from MBC with the prospect for future scale-up for food industry.  相似文献   

5.
A green, simple, and effective method for the extraction of sugarcane lipids from sugarcane rind was investigated by response surface methodology. The optimum conditions of technological progress obtained through response surface methodology were as follows: liquid‐to‐solid ratio 7.94: 1 mL/g, extraction temperature 50°C and extraction time 5.98 h. The practical sugarcane lipids extraction yield was 6.55 ± 0.28%, which was in good consistence with the predicted extraction yield of 6.47%. The results showed that the sugarcane lipids extraction yield obtained in optimum conditions increased by 1.16~7.28‐fold compared to the yields obtained in single‐factor experiments. After saponification and SPE steps, the nonsaponifiable fraction of sugarcane lipids was analyzed by gas chromatography with mass spectrometry and high‐performance liquid chromatography. β‐Sitosterol, stigmasterol, and campesterol were the prevailing phytosterols in the sample, while fucosterol, gramisterol, stigmast‐7‐en‐3‐ol, (3β,5α,24S)‐, stigmasta‐4,6,22‐trien‐3α‐ol, and cholest‐8(14)‐en‐3β‐ol acetate were also identified as minor steroids. Furthermore, the content of β‐sitosterol and a mixture of campesterol and stigmasterol (quantified by high‐performance liquid chromatography) was 44.18 mg/100 g dry weight and 43.20 mg stigmasterol/100 g dry weight, respectively. Our results indicate that sugarcane rind is a good source of phytosterol.  相似文献   

6.
Rambutan (Nephelium lappaceum L.) is a tropical fruit from Asia which has become the main target of many studies involving polyphenolic analysis. Mexico produces over 8 million tons per year of rambutan, generating a huge amount of agro-industrial waste since only the pulp is used and the peel, which comprises around 45% of the fruit’s weight, is left behind. This waste can later be used in the recovery of polyphenolic fractions. In this work, emerging technologies such as microwave, ultrasound, and the hybridization of both were tested in the extraction of phenolic compounds from Mexican rambutan peel. The results show that the hybrid technology extraction yielded the highest polyphenolic content (176.38 mg GAE/g of dry rambutan peel). The HPLC/MS/ESI analysis revealed three majoritarian compounds: geraniin, corilagin, and ellagic acid. These compounds explain the excellent results for the biological assays, namely antioxidant activity evaluated by the DPPH, ABTS, and LOI (Lipid oxidation inhibition) assays that exhibited great antioxidant capacity with IC50 values of 0.098, 0.335, and 0.034 mg/mL respectively, as well as prebiotic activity demonstrated by a µMax (maximum growth) of 0.203 for Lactobacillus paracasei. Lastly, these compounds have shown no hemolytic activity, opening the door for the elaboration of different products in the food, cosmetic, and pharmaceutical industries.  相似文献   

7.
Abstract

The recovery of antioxidants from basil (Ocimum basilicum L.) was modeled with the aid of response surface methodology (RSM) using microwave-assisted extraction (MAE). Face-centered central design (FCCD) was employed to optimize the MAE operational parameters including the extraction time (1 to 7?min), extraction temperature (30 to 120?°C), solid-to-solvent ratio (0.1 to 0.4), and solvent concentration (20 to 80% ethanol, v/v), and to obtain the best possible combinations of these parameters for a high antioxidant yield from basil. The total antioxidant capacity (TAC) was expressed in trolox (TR) equivalents per gram of dried sample (DS). Three of the operational parameters (temperature, extraction time and solvent concentration) were shown to have significant effect on the extraction efficiency of antioxidants in basil extracts (p?<?0.05). The solvent concentration was shown to be the most significant factor on antioxidant yield obtained by MAE. There was a close relationship between experimental and predicted values using the proposed method. This optimized MAE method shows an application potential for the efficient extraction of antioxidants from basil in the food and pharmaceutical industries.  相似文献   

8.
Combining qualitative data from the chromatographic structure of 2-D gas chromatography with flame ionization detection (GC×GC-FID) and that from gas chromatography-mass spectrometry (GC/MS) should result in a more accurate assignment of the peak identities than the simple analysis by GC/MS, where coelution of analytes is unavoidable in highly complex samples (rendering spectra unsuitable for qualitative purposes) or for compounds in very low concentrations. Using data from GC×GC-FID combined with GC/MS can reveal coelutions that were not detected by mass spectra deconvolution software. In addition, some compounds can be identified according to the structure of the GC×GC-FID chromatogram. In this article, the volatile fractions of fresh and dehydrated pineapple pulp were evaluated. The extraction of the volatiles was performed by dynamic headspace extraction coupled to solid-phase microextraction (DHS-SPME), a technique appropriate for slurries or solid matrices. Extracted analytes were then analyzed by GC×GC-FID and GC/MS. The results obtained using both techniques were combined to improve compound identifications.  相似文献   

9.
This study examined how advanced fingerprinting methods (i.e., non-targeted methods) provide reliable and specific information about groups of samples based on their component distribution on the GC × GC chromatographic plane. The volatile fractions of roasted hazelnuts (Corylus avellana L.) from nine different geographical origins, comparably roasted for desirable flavor and texture, were sampled by headspace-solid phase micro extraction (HS-SPME) and then analyzed by GC × GC-qMS. The resulting patterns were processed by: (a) “chromatographic fingerprinting”, i.e., a pattern recognition procedure based on retention-time criteria, where peaks correspondences were established through a comprehensive peak pattern covering the chromatographic plane; and (b) “comprehensive template matching” with reliable peak matching, where peak correspondences were constrained by retention time and MS fragmentation pattern similarity criteria. Fingerprinting results showed how the discrimination potential of GC × GC can be increased by including in sample comparisons and correlations all the detected components and, in addition, provide reliable results in a comparative analysis by locating compounds with a significant role. Results were completed by a chemical speciation of volatiles and sample profiling was extended to known markers whose distribution can be correlated to sensory properties, geographical origin, or the effect of thermal treatment on different classes of compounds. The comprehensive approach for data interpretation here proposed may be useful to assess product specificity and quality, through measurable parameters strictly and consistently correlated to sensory properties and origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号