首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical resistivity ρ and the thermopower coefficient α of a SiC/Si biomorphic composite fabricated from a porous carbon matrix [prepared through pyrolysis of wood (white eucalyptus)] by infiltrating molten Si into the empty channels of the matrix were measured in the temperature ranges 100–950 and 100–750 K, respectively. Silicon reacts chemically with the carbon of the matrix to produce 3C-SiC, which, in combination with the excess Si unreacted with carbon, forms the SiC/Si biomorphic composite. The SiC/Si samples studied had a concentration of “excess” Si of ~30 vol % and a porosity of ~13–15 vol %. Measurements of ρ were carried out on samples cut either along (ρ) or across (ρ) the tree growth direction, and α was measured on a sample cut along the tree growth direction.  相似文献   

2.
The thermal conductivity κ and electrical resistivity ρ of a cellular ecoceramic, namely, the SiC/Si biomorphic composite, are measured in the temperature range 5–300 K. The SiC/Si biomorphic composite is fabricated using a cellular biocarbon template prepared from white eucalyptus wood by pyrolysis in an argon atmosphere with subsequent infiltration of molten silicon into empty through cellular channels of the template. The temperature dependences κ(T) and ρ(T) of the 3C-SiC/Si biomorphic composite at a silicon content of ~30 vol % are measured for samples cut out parallel and perpendicular to the direction of tree growth. Data on the anisotropy of the thermal conductivity κ are presented. The behavior of the dependences κ(T) and ρ(T) of the SiC/Si biomorphic composite at different silicon contents is discussed in terms of the results obtained and data available in the literature.  相似文献   

3.
SiC nanowires with fins have been prepared by chemical vapor deposition in a vertical vacuum furnace by using a powder mixture of milled Si and SiO2 and gaseous CH4 as the raw materials. The products were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). These investigations confirm that the nanowires with fins are cubic β-SiC. The diameter of the fins is about 100–120 nm and the diameter of the inner core stems is about 60–70 nm. The formation process of the β-SiC nanowires with fins is analyzed and discussed briefly.  相似文献   

4.
The thermal conductivity κ and electrical resistivity ρ of a SiC/Si biomorphic composite were measured at temperatures T = 5–300 K. The composite is a cellular ecoceramic fabricated by infiltrating molten Si into the channels of a cellular carbon matrix prepared via pyrolysis of wood (white eucalyptus) in an argon ambient. The κ(T) and ρ(T) relations were measured on a sample cut along the direction of tree growth. The experimental results obtained are analyzed.  相似文献   

5.
Si nanocrystals (NCs) embedded in an SiC matrix were prepared by the deposition of Si-rich Si1?xCx/SiC nanomultilayer films using magnetron sputtering, subsequently followed by thermal annealing in the range of 800~1200 °C. As the annealing temperature increases to 1000 °C, Si NCs begin to form and SiC NCs also start to emerge at the annealing temperature of 1200 °C. With the increase of annealing temperature, two photoluminescence (PL) peaks have an obvious redshift. The intensity of the low-energy PL peak around 669~742 nm gradually lowers, however the intensity of high-energy PL peak around 601~632 nm enhances. The low-energy PL peak might attribute to dangling bonds in amorphous Si (a-Si) sublayers, and the redshift of this peak might be related to the passivation of Si dangling bonds. Whereas the origin of the high-energy PL peak may be the emergence of Si NCs, the redshift of this peak correlates with the change in the size of Si NCs.  相似文献   

6.
Large quantities of Ti-catalyzed β-SiC nanowhiskers were efficiently prepared via a SHS process by pyrolysis of poly (tetrafluoroethylene) (PTFE). The as-synthesized β-SiC whiskers appear to be structurally uniform with width from 50?nm to 2?μm and length of up to several hundred microns, and they are single crystalline in nature. Results demonstrated that Ti particles could significantly accelerate the absorption and dissolving of Si- and C-related fragments. A Ti–Si–C alloy droplet was detected at the end of an individual β-SiC whisker, which indicated that β-SiC whiskers were grown via the vapor–liquid–solid (VLS) growth mechanism. The elastic bending modulus of individual whiskers was measured by an in-situ transmission electron microscopy (TEM) process; the average value of the elastic bending modulus of individual as-synthesized whiskers was 554?GPa.  相似文献   

7.
Contact free vibrating capacitor results have shown that the SiC surface is more stable, compared to Si, and it is possible to identify the different (Si or C) planes on SiC substrates. The surface charge density seems to be higher after compression welding process. Electrostatic (corona) charge on the surface results in accumulation and depletion, and probably avalanche breakdown instead of equilibrium inversion. However, the equilibrium QV curve still can be measured starting from the inversion region.Among CV methods the capabilities of VQ and mercury CV have been investigated, as two major electrical measurement techniques for SiC qualification. SiC–silicon-dioxide interfaces and SiC epitaxial layers were characterized with HF/LF CV and VQ measurement techniques. These methods were developed basically for Si measurements, but they could easily be adapted for measuring SiC too.  相似文献   

8.
《Surface science》1994,317(3):L1129-L1135
Epitaxial silicon carbide films are grown on Si(100) and Si(111) substrates at surface temperatures between 950 and 1250 K via c60 precursors. Films have been grown up to thicknesses greater than 1 μm. The growth rate of the SiC film is not limited by the surface reaction rate of C60 with silicon at these temperatures, rather by the arrival rate of the reactants Si (by diffusion) or C60. This results in rapid film growth. Films have been characterized by low energy electron diffraction, X-ray diffraction, and Auger depth profiling. X-ray diffraction suggests the growth of β-SiC in the temperature range investigated. Auger depth profiling shows the film is stoichiometric. Selective crystalline silicon carbide growth is achieved on patterned silicon-silicon oxide samples.  相似文献   

9.
This paper reports on measurement of the heat capacity at constant pressure C p of silicon bio-carbide prepared within the 5–300 K temperature interval from beech tree wood (bio-SiC(BE)), and within 80–300 K, from tree wood of sapele (bio-SiC(SA)), as well as SiC/Si ecoceramics of beech, sapele, and white eucalyptus wood. It has been shown that in bio-SiC(BE) the measured heat capacity contains a significant contribution of surface heat capacity, whose magnitude decreases with increasing temperature. Of the ecoceramics, only SiC/Si(SA) characterized by a high enough porosity has revealed a small contribution to the heat capacity coming from its surface component. The experimental results obtained are discussed.  相似文献   

10.
The phase composition, surface morphology, and crystal structure of carbon-containing Si layers obtained on silicon surface by chemical conversion are discussed. The effect of structural ordering in the grains formed in the growth figures on an epitaxial surface has been studied for the 3C-SiC/Si(111) system. The possibility of Si1 ? x C x → 3C-SiC phase transitions in a layer upon structure annealing during growth is considered.  相似文献   

11.
A nanocomposite chrysotile-KDP (KH2PO4) was prepared. KDP was introduced into empty nanochannels of chrysotile asbestos with diameters of ~5 nm. Thermal conductivity κ and heat capacity at a constant pressure C p of the samples of chrysotile asbestos and nanocomposite chrysotile asbestos-KDP were measured in a temperature range of 80–300 K. Based on the analysis of the behavior of temperature dependences κ(T) and C p (T) of the composite, temperatures of the ferroelectric transition T F for KDP in nanochannels of chrysotile asbestos were determined. It turned out to be equal to ~250 K at T F ~ 122 K for massive KDP samples.  相似文献   

12.
Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material’s porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:С:Si, SiC:С, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.  相似文献   

13.
Aberration-corrected transmission electron microscope images taken under optimum-defocus conditions or processed offline can correctly reflect the projected crystal structure with atomic resolution. However, dynamical scattering, which will seriously influence image contrast, is still unavoidable. Here, the multislice image simulation approach was used to quantify the impact of dynamical scattering on the contrast of aberration-corrected images for a 3C-SiC specimen with changes in atomic occupancy and thickness. Optimum-defocus images with different spherical aberration (CS) coefficients, and structure images restored by deconvolution processing, were studied. The results show that atomic-column positions and the atomic occupancy for SiC ‘dumbbells’ can be determined by analysis of image contrast profiles only below a certain thickness limit. This limit is larger for optimum-defocus and restored structure images with negative CS coefficient than those with positive CS coefficient. The image contrast of C (or Si) atomic columns with specific atomic occupancy changes differently with increasing crystal thickness. Furthermore, contrast peaks for C atomic columns overlapping with neighboring peaks of Si atomic columns with varied Si atomic occupancy, which is enhanced with increasing crystal thickness, can be neglected in restored structure images, but the effect is substantial in optimum-defocus images.  相似文献   

14.
The thermal conductivity κ and electrical resistivity ρ of a white-eucalyptus cellular carbon preform used to fabricate silicon-carbide-based (SiC/Si) biomorphic ceramics have been measured in the 5-to 300-K temperature interval. The carbon preform was obtained by pyrolysis (carbonization) of white-eucalyptus wood at 1000°C in an argon ambient. The κ(T) and ρ(T) relations were measured on samples cut along the tree growth direction. The experimental data obtained were processed.  相似文献   

15.
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me3Si)2NH) (Me:CH3) and SiH4–C2H2, respectively, by a laser-induced gas-phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured at a frequency range of 8.2–12.4 GHz. The real part (′) and imaginary part (″) of the complex permittivity, and dissipation factor (tg δ=″/′) of nano Si/C/N composite powder are much higher than those of nano SiC powder and bulk SiC, Si3N4, SiO2, and Si, especially the tg δ. The promising features of nano Si/C/N composite powder would be due to more complicated Si, C, and N atomic chemical environment than in a mixture of pure SiC and Si3N4 phase. The charged defects and quasi-free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. Because there exists graphite in the nano Si/C/N composite powder, some charge carries are related to the sp3 dangling bonds (of silicon and carbon) and unsaturated sp2 carbons. The high ″ and tg δ of nano Si/C/N composite powder were due to the dielectric relaxation. The nano Si/C/N composite powder would be a good candidate for electromagnetic interface shielding material.  相似文献   

16.
We have measured the inter-bound state excitation spectrum of the NC donor in cubic β-SiC through the ‘two-electron’ transition satellites observed in the luminescent recombination of excitons bound to neutral N donors. Transitions are seen to p as well as s-like donor states although the transition oscillator strength is derived from interaction with the impurity core since parity is conserved through inter-valley scattering by p-like X phonons. The Zeeman splitting of a luminescence line involving the 2p± donor state yield the electron mass parameter mt = 0.24 ± 0.01 m0. This and the directly measured energy separations of the 2p0 and 2p± states yields mt/m1 = 0.36 ± 0.01 with the static dielectric constant K = 9.92 ± 0.1. Mutually consistent central cell corrections of 1.1 and 8.4 meV are observed for the 2s(A1) and 1s(A1) donor states, the latter being in agreement with a recent estimate from electronic Raman scattering by Gaubis and Colwell. The ionization donor energy of the NC donor, 53.6 ± 0.5 meV is consistent with earlier, less accurate estimates from donor-acceptor pair and free to bound luminescence. There is no evidence for a ‘camel's back’ conduction band structure in cubic SiC, unlike GaP. The two-phonon sidebands of the NC donor exciton luminescence spectrum in SiC can be constructed by X and Г phonons only.  相似文献   

17.
The experimental data on the elastic constants Cij for crystals with diamond and sphalerite structure at T=293 K were used to check the Born relation Δ4C11(C11?C44)/(C11+C12)2=1. The relation was shown to be satisfied with a low accuracy for diamond due to a large scatter in the Cij experimental values and with accuracies of 8.3, 7.6, 1.6, and 1.0% for Si, SiC, Ge, and α-Sn, respectively. For II–VI, III–V, and I–VII compounds with sphalerite structure, Λ was found to systematically deviate from unity toward lower values, and it was shown that the quantity (1-Λ) can be used to estimate the bond ionicity in these crystals. The effect of anharmonicity on the Λ values for Ge, Si, GaAs, InAs, and ZnSe was estimated; this effect was found to be insignificant.  相似文献   

18.
In this work we have compared the SiO2/SiC interface electrical characteristics for three different oxidations processes (dry oxygen, water-containing oxygen and water-containing nitrogen atmospheres). MOS structures were fabricated on 8° off-axis 4H-SiC(0 0 0 1) n- and p-type epi-wafers. Electrical characteristics were obtained by I-V measurements, high-frequency capacitance-voltage (C-V) and ac conductance (G-ω) methods. Comparing the results, one observes remarkable differences between samples which underwent different oxidation routes. Among the MOS structures analyzed, the sample which underwent wet oxidation with oxygen as carrier gas presented the higher dielectric strength and lower values of interface states density.  相似文献   

19.
The electrical resistivity of Sapele-based biomorphic SiC/Si materials was measured in a wide temperature range from 10 K to room temperature. The samples were fabricated by the reactive infiltration of molten silicon into a carbonized Sapele (African Entandrophragma Cylindricum) wood preform. All the samples studied contained residual Si (10–35 wt %). It was found that the resistivity-temperature (ρ(T)) dependences have semimetallic behavior which becomes very close to linear metallic behavior at 100 < T < 300 K. The obtained values of resistivity were quite low (ρ ≈ 0.002–0.02 Ω cm) and showed strong anisotropy: the resistivity along the wood growth axis was several times lower than that in the perpendicular direction. The extent of this anisotropy was in correlation with the amount of residual Si (and, hence, with the amount of residual porosity) in a sample. The resistivity perpendicular to the wood growth axis drastically increased with the Si content, whereas the resistivity parallel to it was practically independent of the Si content. It is suggested that the presence of residual carbon in the samples and carrier scattering at SiC/Si interphases could determine the observed character of ρ(T) dependences.  相似文献   

20.
This paper reports on a study of the temperature dependences of the electrical resistivity, Hall coefficient, and thermopower of nanoporous carbon prepared from polycrystalline carbides (α-SiC, TiC, Mo2C) and 6H-SiC single crystals in the temperature range 1.5–300 K. The structural units responsible for the character of charge transport in these materials are carbon nanoclusters measuring ~10–30 Å. The conductivity in all the samples studied was found to be p type with a high carrier concentration (nh ~ 1020 cm?3). The behavior of the transport coefficients at low temperatures is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号