首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
赵新颖  屈锋  覃浩  罗爱芹 《色谱》2014,32(6):600-603
双水相萃取是一种新型的液-液萃取技术,具有方法简单,易操作,成本低,易放大,条件温和,可保持蛋白质活性等明显优势,特别适用于生物样品的前处理和组分分离。本文建立了15% PEG-4000/8% NaH2PO4双水相体系,通过两次双水相萃取结合高效液相色谱法(HPLC)分离了唾液中的多种蛋白质。经过双水相萃取,对上、下两相中的蛋白质进行色谱的梯度洗脱分析。50 min内蛋白质的色谱峰可分为10组,根据其在上、下两相的分配规律还可划分为6个组分区。结果表明,两次双水相萃取结合HPLC可以实现唾液中的蛋白质的选择性分离。该法为复杂生物样品中的蛋白质多维度、选择性分离和分析提供了新的思路。  相似文献   

2.
A simple aqueous two-phase extraction system(ATPS) of PEG/phosphate was proposed for selective separation and enrichment of proteins.The combination of ATPE with HPLC was applied to identify the partition of proteins in two phases.Five proteins (bovine serum albumin,Cytochrome C,lysozyme,myoglobin,and trypsin) were used as model proteins to study the effect of phosphate concentration and pH on proteins partition.The PEG/phosphate system was firstly applied to real human saliva and plasma samples,some pro...  相似文献   

3.
The feasibility and generic applicability of directly integrating conventional discrete operations of cell disruption by high pressure homogenizer and the product capture by aqueous two-phase extraction (ATPE) system have been demonstrated for the extraction of intracellular L-asparaginase from E. coli. In a side-by-side comparison with the conventional ATPE process, including cell disruption, centrifugal clarification and following ATPE, purification of L-asparaginase via this novel in situ ATPE process yielded a product of L-asparaginase with a higher specific activity of 94.8 U/(mg protein) and a higher yield of 73.3%, both of which in the conventional ATPE process were 78.6 U/(mg protein) and 52.1%, respectively. In the purification of L-asparaginase (pI=4.9), product-debris interactions commonly diminish its recovery. It was demonstrated that immediate extraction of L-asparaginase in ATPE systems when it is released at pH 5.0 during cell disruption effectively increased its recovery in the top phase due to the reduced interaction between L-asparaginase and cell debris and the reduced degradation by contaminated protease. In addition, no clarification step and/or disruptate storage are required in this in situ ATPE, which reduced the number of unit operations and thus shortened the overall process time. This novel process has a good potential for the separation of other intracellular biological products.  相似文献   

4.
Molecular imprinting as a promising and facile separation technique has received much attention because of their high selectivity for target molecules. In this study, the superparamagnetic lysozyme surface-imprinted polymer was prepared by a novel fabricating protocol, the grafting of the imprinted polymer on magnetic particles in aqueous media was done by atom transfer radical polymerization (ATRP), and the properties of the imprinted polymer were characterized in detail. Its high selective adsorption and recognition to lysozyme demonstrated the separation ability of the magnetic imprinted material to template molecule, and it has been used for quick and direct separation of lysozyme from the mixture of standard proteins and real egg white samples under an external magnetic field. Furthermore, the elution of lysozyme from the imprinted material was achieved by PEG/sulphate aqueous two-phase system, which caused lysozyme not only desorption from the imprinted materials but also redistribution in the top and bottom phase of aqueous two-phase system. The aqueous two-phase system exhibited some of the extraction and enrichment effect to desorbed lysozyme. Our results showed that ATRP is a promising method for the protein molecularly imprinted polymer preparation.  相似文献   

5.
Tobacco protein separation by aqueous two-phase extraction   总被引:13,自引:0,他引:13  
Tobacco has long been considered as a host to produce large quantity of high-valued recombinant proteins. However, dealing with large quantities of biomass is a challenge for downstream processing. Aqueous two-phase extraction (ATPE) has been widely used in purifying proteins from various sources. It is a protein-friendly process and can be scaled up easily. In this paper, ATPE was studied for its applicability to recombinant protein purification from tobacco with egg white lysozyme as the model protein. Separate experiments with poly(ethylene glycol) (PEG)-salt-tobacco extract and PEG-salt-lysozyme were carried out to determine the partition behavior of tobacco protein and lysozyme, respectively. Two-level fractional factorial designs were used to study the effects of factors such as, PEG molecular mass, PEG concentration, the concentration of phase forming salt, sodium chloride concentration and pH, on protein partitioning. The results showed that, among the studied systems, PEG-sodium sulfate system was most suitable for lysozyme purification. Detailed experiments were conducted by spiking lysozyme into the tobacco extract. The conditions with highest selectivity of lysozyme over native tobacco protein were determined using a response surface design. The purification factor was further improved by decreasing the phase ratio along the tie line corresponding to the phase compositions with the highest selectivity. Under selected conditions the lysozyme yield was predicted to be 87% with a purification factor of 4 and concentration factor of 14. From this study, ATPE was shown to be suitable for initial protein recovery and partial purification from transgenic tobacco.  相似文献   

6.

Tartrate dehydrogenase (TDH) is a stereospecific intracellular enzyme produced byPseudomonas putida. Several methods for separation of nucleic acids from the proteins in cell homogenate were compared in this study. These methods included precipitation (using streptomycin sulfate, manganous sulfate, and protamine sulfate) and aqueous two-phase extraction. Under optimal conditions of separation, a single-step aqueous two-phase extraction followed by back-extraction of the enzyme from enzyme-rich PEG-phase resulted in77% recovery of enzyme. This compared favorably with 50% enzyme recovery using protamine sulfate treatment. Furthermore, the remaining enzyme activity was accounted in the nucleic acid-rich dextran phase and the spent-PEG phase, suggesting that a multistep extraction process would increase enzyme recovery even more. Under the conditions of aqueous two-phase extraction, the selectivity of proteins over nucleic acids was 30, indicating a high degree of separation of proteins and nucleic acids in this process. The experimental data and their implications are presented.

  相似文献   

7.
本文通过戊二醛法合成免疫磁球(IMMs),采用荧光电镜、透射电镜和振动样品磁强计对其进行表征。合成的IMMs为单分散的球形结构,粒径约为510 nm,具有超顺磁性(饱和磁化强度为40.44 emu/g)。基于此,以牛血清白蛋白(BSA)作为蛋白质模型,建立了免疫亲和富集-荧光光谱法用于目标蛋白质的分离与检测。考察并优化了影响免疫亲和富集的因素。在最佳实验条件下,IMMs对目标蛋白质的最大吸附容量为107.7μg/g,可重复使用10次以上。将该方法应用于人血清基质中BSA的测定,加标回收率不低于89.3%,由基质辅助激光解吸电离飞行时间质谱仪测得分离后的BSA纯度较高。结果表明,该方法适用于人血清样品中蛋白质的选择性分离与检测。  相似文献   

8.
The present work involves the adoption of an integrated approach for the purification of lactoperoxidase from milk whey by coupling aqueous two-phase extraction (ATPE) with ultrasound-assisted ultrafiltration. The effect of system parameters of ATPE such as type of phase system, polyethylene glycol (PEG) molecular mass, system pH, tie line length and phase volume ratio was evaluated so as to obtain differential partitioning of contaminant proteins and lactoperoxidase in top and bottom phases, respectively. PEG 6000-potassium phosphate system was found to be suitable for the maximum activity recovery of lactoperoxidase 150.70% leading to 2.31-fold purity. Further, concentration and purification of enzyme was attempted using ultrafiltration. The activity recovery and purification factor achieved after ultrafiltration were 149.85% and 3.53-fold, respectively. To optimise productivity and cost-effectiveness of integrated process, influence of ultrasound for the enhancement of permeate flux during ultrafiltration was also investigated. Intermittent use of ultrasound along with stirring (2 min acoustic and 2 min stirring) resulted in increased permeate flux from 0.94 to 2.18 l/m2 h in comparison to the ultrafiltration without ultrasound. The use of ultrasound during ultrafiltration resulted in increase in flux, but there was no significant change in activity recovery and purification factor. The integrated approach involving ATPE and ultrafiltration may prove to be a feasible method for the downstream processing of lactoperoxidase from milk whey.  相似文献   

9.
Du Z  Yu YL  Yan XR  Wang JH 《The Analyst》2008,133(10):1373-1379
Multi-walled carbon nanotubes (MWNTs) were assembled on a silica surface using a polyelectrolyte-assisted layer-by-layer (LBL) assembly technique. The surface-assembled silica spheres with MWNTs (MWNTs/SiO(2)), which serve as a novel solid-phase extraction sorbent for separation/pre-concentration of basic proteins, was investigated. The adsorption behavior of cytochrome c (cyto-c) by MWNTs/SiO(2) spheres agrees well with the Langmuir adsorption model. A thorough scrutiny of the experimental parameters affecting the adsorption of cyto-c from aqueous solution onto the MWNTs/SiO(2) spheres and its subsequent desorption was carried out. A maximum adsorption capacity of cyto-c was derived as 112 mg (cyto-c) g(-1) (MWNTs). A distinct feature of the MWNTs/SiO(2)-packed micro-column provides clear advantages of minimized flow impedance when operated in a flow system, in addition to better separation efficiency as well as the favorable enrichment capability of proteins, characterized by an enrichment factor of 30 by using 2.0 mL of aqueous solution. The practical applicability of the MWNTs/SiO(2) spheres as a sorbent for the isolation of basic proteins from acidic protein species was demonstrated by effective separation of cyto-c from bovine serum albumin (BSA).  相似文献   

10.
Epitope extraction technique is based on the specific digestion of a target protein followed by immunoaffinity isolation of a specific recognition peptide. This technique, in combination with mass spectrometry, has been efficiently used for epitope identification. The major goal of this work was to utilize newly developed enzyme and immunoaffinity magnetic reactors for the epitope extraction procedure and confirm the efficiency of this improved system for epitope screening of proteins. Alginic acid-coated magnetite microparticles with immobilized TPCK-trypsin provided high working efficiency with low non-specific adsorption, digestion time in minutes and low frequency of missed cleavages. The sensitivity and specificity of tryptic fragmentation of the beta-amyloid-peptide Abeta (1-40) as a model polypeptide was confirmed by Fourier-transform ion cyclotron resonance mass spectrometry analysis. The Sepharose reactor or immunoaffinity magnetic reactors, both with anti-amyloid-beta monoclonal antibodies, were used for specific isolation and identification of target peptides. In this way, the epitope extraction technique combined with mass spectrometric analysis is shown to be an excellent base for molecular screening of potential vaccine lead proteins.  相似文献   

11.
Currently, small proteins imprinting are more reported since large proteins molecular imprinting faces challenge due to their bulk size and complex structure. In this work, bovine serum albumin (BSA) surface-imprinted magnetic polymer was successfully synthesized based on atomic transfer radical polymerization (ATRP) method in the presence of common monomer (N-isopropylacrylamide) with the assistant of basic functional monomer (N-[3-(dimethylamino)propyl]-methacrylamide), which provides a achievable attempt for imprinting larger target proteins based on the ATPR with the mild reaction conditions. The BSA-imprinted polymer exhibited higher adsorption capacity and selectivity to BSA over the non-imprinted polymer. Competitive adsorption tests indicated the BSA-imprinted polymer had better selective adsorption and recognition properties to BSA in the mixture. The obtained BSA-imprinted polymer was applied to bovine serum, which also showed selectivity to BSA. In addition, a conventional aqueous two-phase solution of PEG/sulphate was used as elution for adsorbed BSA, which was compared with common NaCl elution.  相似文献   

12.
The application of pore-gradient polyacrylamide gel electrophoresis (PG-PAGE) incorporated with carbon nanotube modified by Triton X-100 and carboxylation so as to improve the separation of human serum proteins is reported. The novel PG-PAGE was made by adding water-soluble single-walled carbon nanotubes (CNTs) when preparing the polyacrylamide gel. Significant improvements in separation of complement C3 protein and haptoglobin (Hp) in human serum were achieved. It was estimated that the interactions between the hydrophilic groups on the proteins and the surface of the CNTs result in different adsorption kinetics of complement C3 and Hp subtype on the nanoparticles incorporated in the gel, thus enhancing the separation of the two proteins in serum. This new CNT matrix-assisted PG-PAGE method for enhanced separation of complement C3 and Hp in human serum was successfully applied to distinguish the samples from liverish patients and healthy people.  相似文献   

13.
Pre-fractionation of a complex mixture of proteins increases the resolution in analytical separations of proteins from cells, tissues or organisms. Here we demonstrate a novel method for pre-fractionation of membrane proteins by a detergent-based aqueous two-phase system. Membrane proteins are strongly under-represented in proteomic studies based on two-dimensional electrophoresis (2-DE). As a model system, we have isolated mitochondria from the yeast Saccharomyces cerevisiae. Mitochondrial proteins were fractionated in an aqueous two-phase system consisting of the polymer poly(ethylene glycol) and either of two commonly used non-ionic detergents, Triton X-114 or dodecyl maltoside (DDM). Soluble proteins partitioned mainly to the polymer phase while membrane proteins were enriched in the detergent phase, as identified from one-dimensional electrophoresis (1-DE) and/or 2-DE followed by mass spectrometric analysis. Pre-fractionation was further enhanced by addition of an anionic detergent, sodium dodecyl sulfate, or a chaotropic salt, NaClO4, and by raising the pH in the system. The two-phase system pre-fractionation was furthermore combined with an alternative two-dimensional high-resolution separation method, namely ion-exchange chromatography and 1-DE. By this approach a larger number of membrane proteins could be identified compared to separation with conventional 2-DE. Thus, pre-fractionation of complex protein mixtures using the aqueous two-phase systems developed here will help to disclose larger proportions of membrane proteins in different proteomes.  相似文献   

14.
Thermosensitive core-shell magnetic composite particles with a magnetic silica core and a rich poly (N-vinylcaprolactam) (PNVCL) shell layer were developed for studying the adsorption of bovine serum albumin (BSA) in a batch system. Various analytical and spectroscopic techniques including SEM, FT-IR, VSM and DSC were used to characterize the adsorbents prepared in this study. The combined effects of operating parameters such as initial temperature, pH and initial BSA concentration on the adsorption were analyzed using response surface methodology. The optimum conditions were 40°C, pH 4.68, and initial BSA concentration 2.0 mg/mL. Desorption experiments were conducted by altering the system temperature where a high recovery rate of protein was obtained. The separation process developed here indicates that the dual-responsive smart adsorbent could be an ideal candidate for the separation of protein.  相似文献   

15.
A novel magnetic chelator with high adsorption capacity of protein by immobilized metal affinity adsorption was prepared by cerium (IV) initiated graft polymerization of tentacle-type polymer chains with iminodiacetic acid (IDA) chelating group on magnetic particles with hydroxyl groups. The micron-sized magnetic poly(vinyl acetate-divinylbenzene) (PVAc-DVB) particles were prepared by a modified suspension polymerization in the presence of oleic acid-coated magnetite nanoparticles and subsequently modified by ester exchange reaction to introduce functional hydroxyl groups. Bovine hemoglobin (BHb) was selected as a model protein to investigate the adsorption capacity of these magnetic particles. The magnetic particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) magnetometry, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and X-ray diffraction (XRD). The results showed that the magnetic particles had an average size of 5 microm and superparamagnetism with saturation magnetization of 20.0 emu/g at room temperature. The protein adsorption indicated that the graft polymerization of tentacle type polymer chains on the magnetic particles could produce magnetic adsorbents with high adsorption capacity (1428.21 mg/g) and low nonspecific adsorption of protein. The magnetic particles with grafted tentacle polymer chains have potential application in large-scale affinity separation of proteins.  相似文献   

16.
双水相萃取结合液相色谱法分离蛋白质   总被引:1,自引:0,他引:1  
建立了PEG/( NH4)2SO4双水相体系萃取富集,结合液相色谱分离分析多种蛋白质的方法.考察了无机盐种类和浓度、PEG分子量、pH值和温度等因素对双水相形成以及对细胞色素C、肌红蛋白、牛血清白蛋白、溶菌酶、胰蛋白酶分配行为的影响.结果表明,上述5种蛋白在室温、pH 3.5~9.0范围内,可在15% PEG-4000/10% (NH4)2SO4双水相体系中得到富集,且主要集中在下相.同样条件下,血清中的高丰度蛋白在上下相均有分配,下相分配量较大.通过双水相萃取分离蛋白质及对液相色谱一定时间段的色谱峰收集,可初步实现血清中高丰度蛋白质的分离去除.  相似文献   

17.
Separation of endo-polygalacturonase using aqueous two-phase partitioning   总被引:2,自引:0,他引:2  
The partitioning of endo-polygalacturonase (endo-PG) in polyethylene glycol (PEG)-polyvinyl alcohol (PVA10000) and PEG-hydroxypropyl starch (Reppal PES100) aqueous two-phase systems was studied, and revealed the possibility of using aqueous two-phase extraction to purify and concentrate endo-PG from its clarified fermentation broth. For the PEG8000-PVA10000 system, endo-PG presented in the fermentation broth (at concentration that is more than 40% of total protein) mainly dominates in the top phase with a partitioning coefficient of 6, while total protein concentrates in the bottom phase. A separation scheme consisting of two consecutive aqueous two-phase extraction steps was proposed: a first extraction in polyethylene glycol (PEG8000)-polyvinyl alcohol system, followed by a second extraction in PEG8000-(NH4)2SO4 system. This allowed the separation of endo-PG from polymer and the recycling of PEG polymer, since endo-PG was very strongly partitioned into the bottom phase of the PEG8000-(NH4)2SO4 system. Laboratory-scale experiments were performed to test the efficiency of this scheme. It was found that enzyme recovery was up to 91% with a total purification factor of about 1.9 and a concentration factor of more than 5. About 90% of the total PEG added into the systems can be recovered, and no reduction was obtained in the purification factor using recycled PEG.  相似文献   

18.
疏水层析蛋白质动力学与平衡过程的考察   总被引:4,自引:0,他引:4  
疏水层析是分离生物大分子的常用技术之一,但对疏水层析中蛋白质吸附动力学和平衡过程的研究并不多见.本文对蛋白质疏水吸附动力学和平衡过程作了基本假设,并用实验进行了验证。制备了两种不同丁基密度的疏水琼脂糖介质,用其吸附牛血清白蛋白(BSA)以验证对疏水吸附动力学与平衡过程作的假设,考察了盐浓度及配基密度对蛋白质疏水吸附的影响.还对三种疏水性不同的蛋白质:核糖核酸酶、卵清蛋白和牛血清白蛋白的混合体系进行了分离性能的研究,获得了满意的分离效果.实验表明,蛋白质在疏水介质上的吸附动力学和平衡过程与所作假设相符,在实验条件下等温吸附线符合Langmuir吸附等温方程:研制的丁基琼脂糖疏水介质具有优良的使用性能。  相似文献   

19.
A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by 1H nuclear magnetic resonance (1H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism spectrum (CD spectrum). The precision, stability and repeatability of the process were investigated. The mechanisms of purification were researched by dynamic light scattering (DLS), determination of the conductivity and transmission electron microscopy (TEM). It was suggested that aggregation and embrace phenomenon play a significant role in the purification of proteins. All the results show that FGIL-ATPSs have huge potential to offer new possibility in the purification of proteins.  相似文献   

20.
Magnetic molecularly imprinted nanoparticles were prepared through surface‐initiated reversible addition fragmentation chain transfer polymerization by using metronidazole as a template. The molecularly imprinted magnetic nanoparticles were characterized by attenuated total reflection Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, X‐ray diffraction, and vibrating sample magnetometry. The adsorption characteristics were also investigated and the kinetics of the adsorption of metronidazole on the imprinted nanoparticles were described by the second‐order kinetic model with the short equilibrium adsorption time (30 min). The adsorption isotherm was well matched with the Langmuir isotherm in which the maximum adsorption capacity was calculated to be 40.1 mg/g. Furthermore, the imprinted magnetic nanoparticles showed good selectivity as well as reusability even after six adsorption–desorption cycles. The imprinted magnetic nanoparticles were used as a sorbent for the selective separation of metronidazole from human serum. The recoveries of metronidazole from human serum changed between 97.5 and 99.8% and showed similar sensitivity as an enzyme‐linked immunoassay method. Therefore, the molecularly imprinted magnetic nanoparticles might have potential application for the selective and reliable separation of metronidazole from biological fluids in clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号