首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mass spectrometric and tandem mass spectrometric behavior of eight anabolic steroid glucuronides were examined using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in negative and positive ion mode. The objective was to elucidate the most suitable ionization method to produce intense structure specific product ions and to examine the possibilities of distinguishing between isomeric steroid glucuronides. The analytes were glucuronide conjugates of testosterone (TG), epitestosterone (ETG), nandrolone (NG), androsterone (AG), 5alpha-estran-3alpha-ol-17-one (5alpha-NG), 5beta-estran-3alpha-ol-17-one (5beta-NG), 17alpha-methyl-5alpha-androstane-3alpha,17beta-diol (5alpha-MTG), and 17alpha-methyl-5beta-androstane-3alpha,17beta-diol (5beta-MTG), the last four being new compounds synthesized with enzyme-assisted method in our laboratory. High proton affinity of the 4-ene-3-one system in the steroid structure favored the formation of protonated molecule [M + H]+ in positive ion mode mass spectrometry (MS), whereas the steroid glucuronides with lower proton affinities were detected mainly as ammonium adducts [M + NH4]+. The only ion produced in negative ion mode mass spectrometry was a very intense and stable deprotonated molecule [M - H]- . Positive ion ESI and APCI MS/MS spectra showed abundant and structure specific product ions [M + H - Glu]+, [M + H - Glu - H2O]+, and [M + H - Glu - 2H2O]+ of protonated molecules and corresponding ions of the ammonium adduct ions. The ratio of the relative abundances of these ions and the stability of the precursor ion provided distinction of 5alpha-NG and 5beta-NG isomers and TG and ETG isomers. Corresponding diagnostic ions were only minor peaks in negative ion MS/MS spectra. It was shown that positive ion ESI MS/MS is the most promising method for further development of LC-MS methods for anabolic steroid glucuronides.  相似文献   

2.
Electrospray ionization mass spectra of some glycosyl dithioacetals recorded in the presence of transition-metal chlorides, XCl2 (where X = Co, Mn and Zn), give abundant adduct ions such as [M+XCl]+ and [2M-H+X]+ and minor ions such as [M-H+X]+ and [2M+XCl]+. The tandem mass spectra of these adducts show characteristic elimination of neutral molecules such as H2O, HCl, EtSH, CH2O, C2H4O2/C2H4O. [M+XCl]+ ions fragment readily and the fragmentation appears to be stereochemically controlled as the relative abundances of the fragments are different for three stereoisomers. The added metal is lost as neutral molecules in the form of XCl(OH) and XCl(SEt). This is a predominant pathway in the ZnCl+ adducts. [2M+XCl]+ ions fragment preferentially by elimination of HCl, indicating strong metal interactions in the resulting dimeric [2M-H+X]+ ion. As there are several electron-rich centers in the molecule, the dimeric complex [2M-H+X]+ can have several structures and the observed fragmentations may reflect the sum of those of all these structures. The dimeric complexes fragment by elimination of neutral molecules leaving the dimeric interactions intact. The extent of fragmentation varies for the stereoisomers, leading to stereochemical differentiation.  相似文献   

3.
The fragmentation behavior of taxoids was studied using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources with multi-stage tandem mass spectrometry. In the positive ion mode taxoids gave prominent [M+Na]+ and [M+K]+ ions with the ESI source, and [M+NH4]+ or [M+H]+ ions with the APCI source. The MS/MS fragmentations of ions produced by APCI and ESI sources were very similar. For both sources, the presence of cinnamoyl or benzoyl groups could be characterized by initial losses of 148 or 122 u, respectively, from molecular adduct ions. However, the elimination of cinnamic acid was relatively difficult for the molecular adduct ions formed by APCI, and was comparable in importance to the loss of acetic acid. The other fragments involved losses of CH2CO, CO, and H2O. The 5/7/6 type taxoids underwent characteristic losses of 58 or 118 u from ions produced by both APCI and ESI sources. The fragmentation behavior was remarkably influenced by substitution locations. The elimination of the C-10 benzoyl group was usually the first fragmentation step, while that of the C-2 benzoyl group was relatively difficult. The acetoxyl group at C-7 was more active than those at C-2, C-9, and C-10, which in turn were more active than that at C-4. These fragmentation rules could facilitate the rapid screening and structural characterization of taxoids in plant extracts by high-performance liquid chromatography/mass spectrometry (HPLC/MS).  相似文献   

4.
A systematic study of the fragmentation pattern of N-diisopropyloxyphosphoryl (DIPP) dipeptide methyl esters in an electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was presented. A combination of accurate mass measurement and tandem mass spectrometry had been used to characterize the major fragment ions observed in the ESI mass spectrum. It was found that the alkali metal ions acted as a fixed charge site and expelled the DIPP group after transferring a proton to the amide nitrogen. For all the N-phosphoryl dipeptide methyl esters, under the activation of a metal ion, the rearrangement product ion at m/z 163 was observed and confirmed to be the sodium adduct of phosphoric acid mono-isopropyl esters (PAIE), via a specific five-membered penta-co-ordinated phosphorus intermediate. However, no rearrangement ion was observed when a beta-amino acid was at the N-terminal. This could be used to develop a novel method for differentiating isomeric compounds when either alpha- or beta-amino acid are at the N-terminus of peptides. From the [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters (DIPP Xaa1 Xaa2 OMe), the peaks corresponding to the [M+Na Xaa1 C3H6]+ were observed and explained. The [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters with Phe located in the C-terminal, such as DIPPValPheOMe, DIPPLeuPheOMe, DIPPIlePheOMe, DIPPAlaPheOMe and DIPPPhePheOMe, had characteristic fragmentation. Two unusual gas-phase intramolecular rearrangement mechanisms were first proposed for this fragmentation. These rearrangements were not observed in dipeptide methyl ester analogs which did not contain the DIPP at the N-terminal, suggesting that this moiety was critical for the rearrangement.  相似文献   

5.
Characteristics of electrospray ionization mass spectrometry/collision-induced dissociation (ESIMS/CID) mass spectra of microcystins, cyanobacterial cyclic heptapeptide hepatoxins, were examined. The collision conditions showed remarkable effects on the quality of the CID mass spectra, which were divided into three patterns according to the number of Arg residues. A characteristic cleavage reaction and neutral losses of MeOH, NH3 and guanidine group(s) from the (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4 E,6E-dienoic acid (Adda) and Arg residues were observed in the ESI and ESIMS/CID mass spectra, suggesting the most probable protonation sites in [M + H]+ and [M + 2H]2+ ions of microcystins. Microcystins with no Arg residue showed only [M + H]+ ions with a proton reacting at the methoxyl group in the Adda residue, and the ESIMS/CID/MS data revealed their structures unambiguously. The protonation site in [M + H]+ ions of microcystins with Arg residue(s) was the guanidine group. The [M + 2H]2+ ions of microcystins possessing one Arg residue had one proton on the Arg residue and probably another proton on the Adda residue, while the [M + 2H]2+ ions of microcystins having two Arg residues showed protonation at both Arg residues and the ESIMS/CID/MS data assigned their sequences. Structures of microcystins possessing one Arg residue can be assigned by ESIMS/CID/MS of [M + H]+ ions combined with those of [M + 2H]2+ ions.  相似文献   

6.
The ionization and fragmentation behaviors of carbohydrate derivatives prepared by reaction with 2-aminobenzamide (AB), 1-phenyl-3-methyl-5-pyrazolone (PMP), and phenylhydrazine (PHN) were compared under identical mass spectrometric conditions. It has been shown that the intensities of signals in MS spectra depend on the kind of saccharides investigated and reducing end labels used. PMP sialyllactose, when ionized by ESI/MALDI, produced a mixture of [M + H]+, [M + Na]+, [M - H + 2Na]+ ions in the positive mode and [M - H]-, [M + Na - 2H]- ions in the negative mode. The AB and PHN derivatives formed abundant [M + H]+ and [M - H]- ions in ESI, and by matrix-assisted laser desorption/ionization (MALDI) produced abundant [M + Na]+ ions. PMP- and reduced AB-sialyllactose produced only Y-type fragment ions under both MS/MS sources. In the electrospray ionization (ESI)-MS/MS spectrum of PHN-sialyllactose, abundant ions corresponded to B, Z cleavages and in its MALDI-MS/MS spectrum, the abundant ions were consistent with Y glycosidic cleavages with the concurrence of B, C, and cross-ring fragment ions. In the MALDI-MS spectra of oligosaccharides acquired immediately after derivatization, it was possible to detect only PHN derivatives. After purification, spectra of all three types of derivatives showed high signal-to-noise ratios with the most abundant ions observed for AB reduced saccharides. [M + Na]+ ions were the dominant products and their fragmentation patterns were influenced by the type of the labeling and the kind of oligosaccharide considered. In the MALDI-PSD and -MS/MS spectra of AB-derivatized glycans, higher m/z fragment ions corresponded to B and Y cleavages and the loss of bisecting GlcNAc appeared as a weak signal or was not detected at all. Fragmentation patterns observed in the spectra of hybrid/complex PHN and PMP glycans were more comparable-higher m/z fragments corresponded to B and C glycosidic cleavages. For PHN glycans, the abundance of ions resulting from the loss of bisecting GlcNAc depended on the number of residues linked to the 6-positioned mannose. Also, PHN and PMP derivatives produced cross-ring cleavages with abundances higher than observed in the spectra of AB derivatized oligosaccharides. For high-mannose glycans, the most informative cleavages were provided by AB and PHN type of labeling. Here, PMP produced dominant Y-cleavages from the chitobiose while other ions produced weak signals.  相似文献   

7.
The fragmentation pathways of six triterpenoid saponins from Glycyrrhiza radix were investigated using LC-MS/MS. Depending on the structure and the substitution pattern, different molecular adduct ions, [M+NH4]+ or [M+H]+, were observed in the positive ESI spectra. In the positive MSn spectra from the molecular adduct ions, characteristic product ions corresponding to the loss of dehydrated glucuronic acid or glucuronic acid were detected and they indicated the type of substitution and structural modification. Fragment ions originating from the sapogenin moiety in the positive mass spectra were predominantly provided by saponins having an 11-oxo-12-ene structure. On the other hand, the saponins gave fragment ions corresponding to the sugar moiety in the negative mass spectra. These results indicate the specific property of saponins that have the 11-oxo-12-ene structure to localize positive or negative charge in the mass spectrometric ionization and fragmentation process. Information obtained from the present study can be utilized for structural elucidation of triterpenoid saponins in the Glycyrrhiza radix by LC-MS.  相似文献   

8.
The protonated [M + H]+ ions of glycine, simple glycine containing peptides, and other simple di- and tripeptides react with acetone in the gas phase to yield [M + H + (CH3)2CO]+ adduct ion, some of which fragment via water loss to give [M + H + (CH3)2CO - H2O]+ Schiff's base adducts. Formation of the [M + H + (CH3)2CO]+ adduct ions is dependent on the difference in proton affinities between the peptide M and acetone, while formation of the [M + H + (CH3)2CO - H2O]+ Schiff's base adducts is dependent on the ability of the peptide to act as an intramolecular proton "shuttle." The structure and mechanisms for the formation of these Schiff's base adducts have been examined via the use of collision-induced dissociation tandem mass spectrometry (CID MS/MS), isotopic labeling [using (CD3)2CO] and by comparison with the reactions of Schiff's base adducts formed in solution. CID MS/MS of these adducts yield primarily N-terminally directed a- and b-type "sequence" ions. Potential structures of the b1 ion, not usually observed in the product ion spectra of protonated peptide ions, were examined using ab initio calculations. A cyclic 5 membered pyrrolinone, formed by a neighboring group participation reaction from an enamine precursor, was predicted to be the primary product.  相似文献   

9.
The fragmentation of the sodium adduct ions for tert-butoxycarbonyl-L-prolyl-L-proline ethyl ester (Boc-L-Pro-L-Pro-OEt) was compared with that for Boc-D-Pro-L-Pro-OEt in positive-ion electrospray ionization (ESI) mass spectrometry. In the collision-induced dissociation (CID) mass spectra of the [M + Na](+) ions, the abundance of the [M + Na - C(CH(3))(3) + H](+) ion, which is due to the loss of a tert-butyl group from the [M + Na](+) ion for Boc-D-Pro-L-Pro-OEt, was about eight times higher than that for Boc-L-Pro-L-Pro-OEt. In addition, in the CID spectra of the sodium adduct fragment ion ([M + Na - Boc + H](+)), the abundance of the [M + Na - Boc - prolylresidue + H](+) ion, which is due to the loss of prolyl residue from the [M + Na - Boc + H](+) ion for Boc-L-Pro-L-Pro-OEt, was about five times higher than that for Boc-D-Pro-L-Pro-OEt. These results indicate that Boc-L-Pro-L-Pro-OEt was distinguished from Boc-D-Pro-L-Pro-OEt by the CID mass spectra of the sodium adduct ions in ESI mass spectrometry. The optimized geometries of the [M + Na](+) and the [M + Na - Boc + H](+) ions calculated by ab initio molecular orbital calculations suggest that the chiral recognition of these diastereomers was due to the difference of the orientation of a sodium ion to the oxygen and nitrogen atoms in dipeptide derivatives, and to the difference of the total energies between them.  相似文献   

10.
Electrospray ionization (ESI) and collisionally induced dissociation (CID) mass spectra were obtained for five tetracyclines and the corresponding compounds in which the labile hydrogens were replaced by deuterium by either gas phase or liquid phase exchange. The number of labile hydrogens, x, could easily be determined from a comparison of ESI spectra obtained with N2 and with ND3 as the nebulizer gas. CID mass spectra were obtained for [M + H]+ and [M - H]- ions and the exchanged analogs, [M(Dx) + D]+ and [M(Dx) - D]- , and produced by ESI using a Sciex API-III(plus) and a Finnigan LCQ ion trap mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the MS(N) spectra of the un-deuterated and deuterated species. Protonated tetracyclines dissociate initially by loss of H2O (D2O) and NH3 (ND3) if there is a tertiary OH at C-6. The loss of H2O (D2O) is the lower energy process. Tetracyclines without the tertiary OH at C-6 lose only NH3 (ND3) initially. MSN experiments showed easily understandable losses of HDO, HN(CH3)2, CH3 - N=CH2, and CO from fragment ions. The major fragment ions do not come from cleavage reactions of the species protonated at the most basic site. Deprotonated tetracyclines had similar CID spectra, with less fragmentation than those observed for the protonated tetracyclines. The lowest energy decomposition paths for the deprotonated tetracyclines are the competitive loss of NH3 (ND3) or HNCO (DNCO). Product ions appear to be formed by charge remote decompositions of species de-protonated at the C-10 phenol.  相似文献   

11.
A non-covalent-bonded dimer was detected in the positive ion electrospray ionisation (ESI) mass spectra of a synthetic impurity. In tandem mass spectrometry (MS/MS) experiments using collision-induced dissociation (CID), the ion was found to behave as a [M+H]+-type precursor ion for fragmentation until MS5. The dimer was probably formed through multi-hydrogen bonds over a proton bridge. When the fragmentation occurred at the center of the bridge, the dimer was broken apart to give monomer fragments at MS6. However, no corresponding deprotonated dimer [2M-H]- was found in the negative ion ESI spectra. The dimer was extremely stable, and it could still be observed when a fragmentation voltage of up to 50 V was applied in the ionisation source. The formation of the non-covalent dimer was also found to be instrument-dependent, but independent of sample concentration. Accurate mass measurements of the [2M+H]+ and [M+H]+ ions, and their MSn product ions, provided the basis for assessing the fragmentation mechanism proposed for [2M+H]+. The fragmentation pathway was also illustrated for the deprotonated molecule [M-H]-.  相似文献   

12.
Derivatives were prepared from N-linked glycans by reductive amination from 2-aminobenzamide, 2-aminopyridine, 3-aminoquinoline, 2-aminoacridone, 4-amino-N-(2-diethylaminoethyl)benzamide, and the methyl, ethyl, and butyl esters of 4-aminobenzoic acid. Their electrospray and collision-induced dissociation (CID) fragmentation spectra were examined with a Q-TOF mass spectrometer. The strongest signals were obtained from the [M + Na]+ ions for all derivatives except sugars derivatized with 4-amino-N-(2-diethylaminoethyl)benzamide which gave very strong doubly charged [M + H + Na]2+ ions. The strongest [M + Na]+ ion signals were obtained from the butyl ester of 4-aminobenzoic acid and the weakest from 2-aminopyridine. The most informative spectra were recorded from the [M + Li]+ or [M + Na]+ ions. These spectra were dominated by ions produced by sequence-revealing glycosidic cleavages and "internal" fragments. Linkage-revealing cross-ring cleavage ions were reasonably abundant, particularly from high-mannose glycans. Although the nature of the derivative was found to have little effect upon the fragmentation pattern, 3-aminoquinoline derivatives gave marginally more abundant cross-ring fragments than the other derivatives. [M + H]+ ions formed only glycosidic fragments with few, if any, cross-ring cleavage ions. Doubly charged molecular ions gave less informative spectra; singly charged fragments were weak, and molecular ions containing hydrogen ([M + 2H]2+ and [M + H + Na]2+) fragmented as the [M + H]+ singly charged ions with no significant cross-ring cleavages.  相似文献   

13.
Brevetoxins are a group of natural neurotoxins found in blooms of red tide algae. Previous electrospray mass spectrometry (ES-MS) studies show that all brevetoxins have high affinities for sodium ions, and they form abundant sodium adduct ions, [M + Na]+, in ES-MS, even when trace contamination is the only source of sodium ions. Attempts to obtain informative product ions from the collision-induced decomposition (CID) of [M + Na]+ brevetoxin precursor ions resulted only in uninformative sodium ion signals, even under elevated collision energies. In this study, a nano-ES-MS approach was developed wherein ammonium fluoride was used to form cationic [M + NH4]+ adducts of brevetoxin-2 and brevetoxin-3; a significant increase in the abundance of protonated brevetoxin molecules [M + H]+ also resulted, whereas the abundance of sodium adducts of brevetoxins [M + Na]+ was observed to decrease. Under CID, both [M + NH4]+ and [M + H]+ gave similar, abundant product ions and thus underwent the same types of fragmentation. This indicated that ammonium ions initially attached to brevetoxins forming [M + NH4]+ easily lose neutral ammonia in a first step in the gas phase, leaving protonated brevetoxin [M + H]+ to readily undergo further fragmentation under CID.  相似文献   

14.
Phosphatidylethanolamines (PEs) are one of the major constituents of cellular membranes, and, along with other phospholipid classes, have an essential role in the physiology of cells. Profiling of phospholipids in biological samples is currently done using mass spectrometry (MS). In this work we describe the MS fragmentation of sodium adducts of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and 2-linoleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (PLPE). This study was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) using three different instruments and also by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). All MS/MS spectra show product ions related to the polar head fragmentation and product ions related to the loss of acyl chains. In ESI-MS/MS spectra, the product ions [M+Na-R1COOH-43]+ and [M+Na-R2COOH-43]+ show different relative abundance, as well as [M+Na-R1COOH]+ and [M+Na-R2COOH]+ product ions, allowing identification of both fatty acyl residues of PEs, and their specific location. MALDI-MS/MS shows the same product ions reported before and other ions generated by charge-remote fragmentation of the C3-C4 bond (gamma-cleavage) of fatty acyl residues combined with loss of 163 Da. These fragment ions, [M+Na-(R2-C2H3)-163]+ and [M+Na-(R1-C2H3)-163]+, show different relative abundances, and the product ion formed by the gamma-cleavage of sn-2 is the most abundant. Overall, differences noted that are important for identification and location of fatty acyl residues in the glycerol backbone are: relative abundance between the product ions [M+Na-R1COOH-43]+ > [M+Na-R2COOH-43]+ in ESI-MS/MS spectra; and relative abundance between the product ions [M+Na-(R2-C2H3)-163]+ > [M+Na-(R1-C2H3)-163]+ in MALDI-MS/MS spectra.  相似文献   

15.
Positive ion mass spectral fragmentation of new N-carbamoyl/N-thiocarbamoyl derivatives of narcotine and compounds closely related to it are reported and discussed. The techniques used include electron impact (EI), fast-atom bombardment (FAB), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Prominent peaks in the mass spectra of these compounds appear to involve C-C bond cleavage beta to the amine nitrogen with loss of the 4,5-dimethoxy(1H)isobenzofuranone moiety from their molecular ions, along with another prominent peak at m/z 382. No molecular ion peaks of these compounds were recorded in EI, whereas intense [M + H]+ ion peaks were observed in FAB and ESI spectra. MALDI also yielded [M + H]+ ion peaks in good agreement with FAB and ESI studies.  相似文献   

16.
Analyses by flow injection as well as liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were performed with four 4-phenoxyphenol derivatives. When ambient temperature nitrogen gas was used to facilitate solvent evaporation, [M + H]+, [M + NH4]+, and [2M + NH4]+ ions were observed as the major ions. As the nitrogen gas temperature increased from ambient to 250 and 450 degrees C, [M]+*, [M - 1]+ and [M + 15]+ ions were the predominant ions. Heat-induced oxidation was found to be the primary source for the formation of oxidative species. Aqueous solvents were found to be essential for the formation of the [M + 15]+ ions. The [M]+* and [M + 15]+ ions were further characterized by tandem mass spectrometry. Based on the MS/MS data, it was proposed that the [M + 15]+ ions were the in-source generated 1,2-quinone ions.  相似文献   

17.
Some compounds readily form [M+46]+ adduct ions during positive ion electrospray ionization mass spectrometry ((+)ESI-MS) analysis. These [M+46]+ ions were characterized as [M+CH3CH2NH2+H]+ by accurate mass determination. Ethylamine involved in the adduct was proposed to be the reduction product of acetonitrile and this was confirmed using deuterated acetonitrile. Other nitrile-containing compounds tested, including isobutyronitrile and benzonitrile, also formed the adduct ions of the respective amine forms under (+)ESI-MS conditions. Hydrogen/deuterium exchange experiments demonstrated that the reductive hydrogen originated from water. Reduction of nitriles (R-CN) to their respective amines (R-CH2NH2) under (+)ESI-MS conditions expands the ability to identify nitrile-containing chemical unknowns.  相似文献   

18.
本文报道37个含氟膦.胂羰基的叶立德衍生物的电子轰击(EI)和8个含氟胂羟基叶立德的甲烷化学电离(Cl)正.负离子质谱. 研究其断裂规律,氧和氟原子重排以及不同取代基对一些特征离子强度的影响.  相似文献   

19.
Electrospray ionization tandem mass spectral (ESI-MSn) analysis of thiodiglycol, bis(2-hydroxyethylthio)alkanes (BHETAs) and their mono-, di-, tri-, and tetraoxygenated compounds was carried out to obtain their characteristic spectra for ESI-MS analysis. These compounds are important markers of chemical warfare agents, namely sulfur mustards. ESI-MSn (n > or = 3) analysis of a compound by collisionally induced dissociation in an ion trap gives rise to mass spectra that are somewhat similar to electron ionization mass spectra. These ESI-MSn spectra can be used for compound identification. Under ESI-MS and ESI-MS/MS the compounds mostly produced [M+NH4]+, [M+H]+ and [M+H--H2O]+ ions. Fragmentations of these even-electron precursors in the ion trap gave rise to characteristic product ions via neutral loss of O2, H2O, C2H4, HCHO, C2H4O, C2H4S, HSC2H4OH and C2H4SO. Fragmentation routes of these compounds are proposed that rationalize the formation of product ions in ESI-MSn analysis.  相似文献   

20.
The antimicrobial moenomycin, commonly used as a growth promoter in livestock, was isolated from medicated chicken feed. The purified extract was subjected to reversed-phase liquid chromatographic separation followed by structural characterization using ion-trap mass spectrometry (ITMS), which allowed identification of five moenomycins (A, A12, C1, C3, and C4) as the major components. The fragmentation patterns of the protonated and deprotonated moenomycin molecules, as well as of a series of sodium adducts, were investigated using ITMS after electrospray ionization. While the protonated molecules [M+H]+ proved highly unstable and underwent extensive in-source fragmentation, isolation and activation of the [M--H]- ions (m/z 1580 for moenomycin-A) yielded simple mass spectra with a dominant base peak corresponding to the loss of the carboxy-glycol and the C25-hydrocarbon chain (m/z 1152 for moenomycin-A). Further study of this fragment ion in an MS3 experiment gave rise to a peculiar product ion (m/z 902 for moenomycin-A) that was attributed to the expulsion of a carbohydrate moiety representing a central building block of the linear molecule. In positive ion mode the generation of the mono-sodiated adduct ions, [M+Na]+, was promoted by amending the mobile phase with 100 microM sodium acetate, but this also resulted in higher adducts of the type [M+2Na--H]+ and [M+3Na--2H]+ arising from the formation of the sodium salts of the phosphate acid diester and subsequently of the carboxylic acid. Substantial differences among the fragment-rich product ion profiles of the three species were observed, and could in part be traced back to the mode of complexation of the additional sodium cation(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号