首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


2.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

3.
The preparation and properties as well as some reactions of a series of arylcarbonylbis(triphenylphosphine)iridium(I) complexes [Ir(Ar)(CO)(PPh3)2] (Ar = C6H5, C6F5, 2-C6H4CH3, 3-C6H4CH3, 4-C6H4CH3, 2-C6H4OCH3, 2,6-C6H3-(OCH3)2, 4-C6H4N(CH3)2, 3-C6H4Cl, 4-C6H4Cl, 4-C6H4Cl, 3-C6H4CF3, 4-C6H4CF3) are described, and the most important IR data as well as the 31P NMR parameters of these, without exception trans-planar, compounds are given.

Some of the complexes react with molecular oxygen to form well defined dioxygen adducts [Ir(Ar)(O2)(CO)(PPh3)2] (Ar = C6H5, 3-C6H4CH3, 4-C6H4CH3). Complexes with ortho-substituted aryl ligands are not oxygenated. This effect is referred to as a steric shielding of the metal center by the corresponding ortho-substituents. With SO2 the similar irreversible addition compound [Ir(4-C6H4CH3)-(SO2)(CO)(PPh3)2] is obtained. Sulfur dioxide insertion into the Ir---C bond cannot be observed.

The first step of the reaction between [Ir(4-C6H4CH3)(CO)(PPh3)2] and hydrogen chloride involves an oxidative addition of HCl to give [Ir(H)(Cl)(4-C6-H4CH3)(CO)(PPh3)2]. Ir---C bond cleavage by reductive elimination of toluene from the primary adduct does not occur except at elevated temperature.  相似文献   


4.
The compounds (π-C5H5)(CO)2LM-X (L = CO, PR3; M = Mo, W; X = BF4, PF6, AsF6, SbF6) react with H2S, p-MeC6H4SH, Ph2S and Ph2SO(L′) to give ionic complexes [(π-C5H5)(CO)2LML′]+ X. Also sulfur-bridged complexes, [(π-C5H5)(CO)3W---SH---W(CO)3(π-C5H5)]+ AsF6 and [(π-C5H5)(CO)3M-μ-S2C=NCH2Ph-M(CO)3(π-C5H5)], have been obtained. Reactions with SO2 and CS2 have been examined.  相似文献   

5.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

6.
The infrared spectra of solid samples of C4H7K and C4D7K have been investigated in the 4000 to 30 cm−1 range. A complete assignment of intramolecular fundamentals of C4H7 and C4D7 ions and of potassium-allyl vibrations is proposed and the intramolecular force constants are calculated. The C(CH2)32− anion has been identified spectroscopically. Structures of C3H5, C4H7 and C(CH3)32− are discussed and compared with those optimised by the MINDO/3 method.  相似文献   

7.
Treatment of 1,2-trans-C5H8(PCl2)2 with 1,2-C2H4(NHPr-i)2 gave the C2-symmetric perhydro-1,6,2,5-diazaphosphocine C5H8{P(Cl)N(Pr-i)CH2}2-cyclo, which produced dissymmetric C5H8(PPh2){P[N(Pr-i)CH2]2-cyclo} on further reaction with PhMgBr. Cleavage of the P---N bonds with gaseous HCl afforded C5H8(PPh2)(PCl2), which was converted to C5H8(PPh2){P(OPh)2}2 by reaction with phenol. All chiral P,P derivatives were obtained as racemates as well as resolved (1R,2R)- and (1S,2S)-enantiomers.  相似文献   

8.
MoO2(C5H7O2)2, where C5H7O2 is 2,4-pentanedione (acac), reacts with 2-2′ pyridylbenzoxazole in acetone to give a product with stoichiometry, Mo3C24H16N6O12. This product dissolves readily in dimethylformamide to give a brown solution which on standing for several weeks yielded crystals. An X-ray structure determination showed these crystals to contain uncoordinated 2-2′pyridylbenzoxazole and [(CH3)2NH2]4+[Mo8O26]4−.  相似文献   

9.
(C6H(14)N2)[NH4(ClO4)3] is a newly developed porous hybrid inorganic-organic framework material with easy access and excellent detonation performances,however,its thermal properties is still unclear and severely hampered further applications.In this study,thermal behaviors and non-isothermal decomposition reaction kinetics of(C6H(14)N2)[NH4(ClO4)3] were investigated systematically by the combination of differential scanning calorimetry(DSC) and simultaneous thermal analysis methods.In-situ FTIR spectroscopy technology was applied for investigation of the structure changes of(C6H(14)N2) NH4(ClO4)3]and some selected referents for better understanding of interactions between different components during the heating process.Experiment results indicated that the novel molecular perovskite structure renders(C6H(14)N2)[NH4(ClO4)3] better thermal stability than most of currently used energetic materials.Underhigh temperature s,the stability of the cage skeleton constructed by NH4^+and ClO4^-ions determined the decomposition process rather than organic moiety confined in the skeleton.The simple synthetic method,good detonation performances and excellent thermal properties make(C6H(14)N2)[NH4(ClO4)3] an ideal candidate for the preparation of advanced explosives and propellants.  相似文献   

10.
Irradiation of Cp2* Nb(η2---S2)H (Cp* = C5Me5) 1a in the presence of Fe(CO)5 gives the CO-free complex [Cp2*NbS2]2Fe 2a. The core of 2a contains an FeS4 tetrahedron which is ligated by two niobocene ligands as shown by X-ray diffraction analysis. In the reaction of 1a or Cp2xNb(η2---S2)H (CPx = C5Me4Et) 1b with Co2(CO)8, compounds 3a and 3b of the same type are formed. Electrochemical studies of 2a and 3a,b show that they undergo three reversible 1e steps. The oxidation of 3b exerts a considerable influence on its absorption spectrum. A qualitative EHMO analysis is in agreement with a strong delocalisation of electron density over the whole NbS2MS2Nb system.  相似文献   

11.
Polymerizations of ethylene have been carried out by using Cp2*Zr(NMe2)2 (Cp*=C5Me5) compound combined with common alkyl aluminums (AlR3) and methylaluminoxane (MAO) as cocatalysts. The AlMe3 cocatalyzed system showed no activity due to the formation of stable but inactive heterodinuclear [Cp2*2Zr(μ-Me)2AlMe2]+ cations; however, the bulkier AlR3 [AlEt3, Al(i-Bu)3 and Al(i-Bu)2H] cocatalyzed systems showed very high activities. Especially, Cp2*Zr(NMe2)2/Al(i-Bu)3 catalyst showed higher catalytic activity and produced higher molecular weight (MW) polymer than Cp2*Zr(NMe2)2/MAO catalyst, demonstrating both MAO and bulky AlR3 are effective cocatalysts for Cp2*Zr(NMe2)2 compound.  相似文献   

12.
The reaction of [R-(R,R)]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(NCMe)]PF6 with (±)-AsHMePh in boiling methanol yields crystalline [R-[(R)-(R,R)]-(+)589)-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsHMePH)PF6, optically pure, in ca. 90% yield, in a typical second-order asymmetric transformation. This complex contains the first resolved secondary arsine. Deprotonation of the secondary arsine complex with KOBut at −65°C gives the diastereomerically pure tertiary arsenido-iron complex [R-[(R),(R,R)]]-[((η5-C5H5){1,2-C6H4(PMePh)2}FeAsMePh] · thf, from which optically pure [R-[(S),(R,R)]]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsEtMePh)PF6 is obtained by reaction with iodoethane. Cyanide displaces (R)-(−)589-ethylmethylphenylarsine from the iron complex, thereby effecting the asymmetric synthesis of a tertiary arsine, chiral at arsenic, from (±)-methylphenylarsine and an optically active transition metal auxiliary.  相似文献   

13.
运用密度泛函(DFT)理论,采用Materials Studio 8.0,用GGA/BP方法研究了C_6H_2(OH)_3CH_3氧化成羟基苯甲酸的反应路径。结果表明,甲基上的氢原子被氧化成羟基以及羟基被氧化为醛基及醛基被氧化成羧基均为放热过程。分子C_6H_2(OH)_3CH_3中甲基氧化成羧基的主路径为三个氢原子氧化反应路径,其路径为C_6H_2(OH)_3CH_3+3O→C6H2(OH)3C(OH)3→C6H2(OH)3COOH+H2O,该路径受限于羟基直接被氧化成羧基过程,需克服130 k J/mol的反应势垒,反应速率常数对数ln(k)为-22.96 s-1;醛基、羟基优先被氧化成羧基的顺序为:-CHO-C(OH)3-HC(OH)2-H2C(OH);提高反应温度、氧气浓度均有利于羟基苯甲酸的生成,适当的催化剂有利于促进整个反应的进行。  相似文献   

14.
We study here the reactions between C60 and planar C5H5+ cations that lead to the formation of [C60C5H5]+ adduct cations in the chemical ionization source of the mass spectrometer. The structures, stabilities and charge locations of some possible isomers of [C60C5H5]+: σ-adduct, π-complex, [1,4]- and [l,2]-addition cations, are studied by AM1 semiempirical molecular orbital calculations. We find that the most stable is the σ-addition cation. Another interesting and stable structure is the π-complex cation which is bonded by the electrostatic interaction at the inter-ring distance of 1.589 Å with the C5v symmetry. The C5H5+ cyclopentadienium cation seems to be an “inverted umbrella” sitting on a five-membered ring of the C60 cage.  相似文献   

15.
The aryldiazenido ligands provide the fourth member of the isoelectronic series CO, NO+, RNC, RN2+ of ligands for transition metal complexes. The first aryldiazenido metal complex was reported in 1964 when p-CH3OC6H4N2Mo(CO)2C5H5 was prepared by the reaction of NaMo(CO)3C5H5 with p-CH3OC6H4N2+BF4. This review surveys the development of organometallic aryldiazenido chemistry since that time. Such organometallic aryldiazenido derivatives, including RN2M(CO)2C5H5, RN2M(CO)2(Pz3BH) (M = Cr, Mo, W), [(η6-Me6C6)Cr(CO)2N2Ar]+, [(MeC15H4)M′(CO)2N2Ar]+ M′ = Mn, Re), [trans-PhN2Fe(CO)2(PPh3)2]+, and PhN2M′(CO)2(PPh3)2(PPh3)2 can be obtained by reactions of arenediazonium salts with suitably chosen transition metal nucleophiles. Analogous methods cannot be used to prepare alkyldiazenido transition metal complexes because of the instability of alkyldiazonium salts. However, the alkyldiazenido derivatives RCH2N2M(CO)2C5H5 (R = H or Me3Si) can be obtained from HM(CO)3C5H5 and the corresponding diazoalkanes. Important aspects of the chemical reactivity of RN2M(CO)2Q derivatives (Q = C5H5, Pz3BH) include CO substitution reactions, coordination of the second nitrogen in the RN2 ligand to give heterobimetallic complexes such as C5H5Mo(CO)2(μ-NNC6H4Me)(CO)2C5H5, oxidative addition rections with X2 X = Cl, Br, I), SnX4, RSSR, and CINO, and reactions with further RN2+ to give bis(aryldiazenido) derivatives (RN2)2MQL+ (L = CO, X, etc.). Dearylation of an aryldiazenido ligand to a dinitrogen ligand can be effected by reaction of [(MeC5H4)M′(CO)2N2Ar]+ with certain nucleophiles to give (MeC5H4)M′(CO)2N2.  相似文献   

16.
The reactions of RNHSi(Me)2Cl (1, R=t-Bu; 2, R=2,6-(Me2CH)2C6H3) with the carborane ligands, nido-1-Na(C4H8O)-2,3-(SiMe3)2-2,3-C2B4H5 (3) and Li[closo-1-R′-1,2-C2B10H10] (4), produced two kinds of neutral ligand precursors, nido-5-[Si(Me)2N(H)R]-2,3-(SiMe3)2-2,3-C2B4H5, (5, R=t-Bu) and closo-1-R′-2-[Si(Me)2N(H)R]-1,2-C2B10H10 (6, R=t-Bu, R′=Ph; 7, R=2,6-(Me2CH)2C6H3, R′=H), in 85, 92, and 95% yields, respectively. Treatment of closo-2-[Si(Me)2NH(2,6-(Me2CH)2C6H3)]-1,2-C2B10H11 (7) with three equivalents of freshly cut sodium metal in the presence of naphthalene produced the corresponding cage-opened sodium salt of the “carbons apart” carborane trianion, [nido-3-{Si(Me)2N(2,6-(Me2CH)2C6H3)}-1,3-C2B10H11]3− (8) in almost quantitative yield. The reaction of the trianion, 8, with anhydrous MCl4 (M=Ti and Zr) in 1:1 molar ratio in dry tetrahydrofuran (THF) at −78 °C, resulted in the formation of the corresponding half-sandwich neutral d0-metallacarborane, closo-1-M[(Cl)(THF)n]-2-[1′-η1σ-N(2,6-(Me2CH)2C6H3)(Me)2Si]-2,4-η6-C2B10H11 (M=Ti (9), n=0; M=Zr (10), n=1) in 47 and 36% yields, respectively. All compounds were characterized by elemental analysis, 1H-, 11B-, and 13C-NMR spectra and IR spectra. The carborane ligand, 7, was also characterized by single crystal X-ray diffraction. Compound 7 crystallizes in the monoclinic space group P21/c with a=8.2357(19) Å, b=28.686(7) Å, c=9.921(2) Å; β=93.482(4)°; V=2339.5(9) Å3, and Z=4. The final refinements of 7 converged at R=0.0736; wR=0.1494; GOF=1.372 for observed reflections.  相似文献   

17.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

18.
A novel tetranuclear terbium(III) complex [Tb4(OH)4(pybet)6(H2O)8][Tb4(OH)4(pybet)6(H2O)7 (NO3)](ClO4)14·6H2O has been synthesized and shown by X-ray crystallography to have a cubane-like Tb43-OH)42-carboxylato-O,O′)6 core. The ligand pybet is pyridinoacetate, C5H5+N-CH2CO2. Magnetic susceptibility data were measured for this Tb4 complex in the range of 2.0–320 K and in fields of 1.0 G to 50.0 kG. It is concluded that either there is very weak antiferromagnetic exchange interaction (J = −0.015 cm−1) or there is a small crystal-field splitting of the 7F6 TbIII ground state.  相似文献   

19.
The macrocyclic compound, [1,2-C2B10H10-1,4-C6H4-1,7-C2B10H10-1,4-C6H4]2 (5)—a novel cyclooctaphane, was prepared by condensation of the C,C′-dicopper(I) derivative of meta-carborane with 1,2-bis(4-iodophenyl)-ortho-carborane. The X-ray crystal structure of 5·C6H6·6C6H12 was determined at 150 K, revealing an extremely loose packing mode. Molecule 5 has a crystallographic Cs and local C2v symmetry; the macrocycle adopts a butterfly (dihedral angle 143°) conformation with the ortho-carborane units at the wingtips and the phenylene ring planes roughly perpendicular to the wing planes. Multinuclear NMR spectra suggest that molecule 5 in solution inverts rapidly via the planar D2h geometry, which (from ab initio HF/6-31G* calculations) is only 1 kcal mol−1 higher in energy than the C2v one. An attempt to prepare an even larger macrocycle, comprising three para-carborane and three ortho-carborane units linked by six para-phenylene units, was unsuccessful.  相似文献   

20.
The reaction of [(C6H6)RuCl2]2 with 7,8-benzoquinoline and 8-hydroxyquinoline in methanol were performed. The obtained complexes have been studied by IR, UV–VIS, 1H and 13C NMR spectroscopy and X-ray crystallography. In the reaction with 8-hydroxyquinoline the arene ruthenium(II) complex oxidized to Ru(III). The electronic spectra of the obtained compounds have been calculated using the TDDFT method. Magnetic properties of [Ru(C9H6NO)3] · CH3OH complex suggest the antiferromagnetic coupling of the ruthenium centers in the crystal lattice. EPR spectrum of [Ru(C9H6NO)3] · CH3OH compound indicates single isotropic line only characteristic for Ru3+ with spin equal to 1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号