首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Statistically planar turbulent premixed and partially premixed flames for different initial turbulence intensities are simulated for global equivalence ratios ??>?=?0.7 and ??>?=?1.0 using three-dimensional Direct Numerical Simulations (DNS) with simplified chemistry. For the simulations of partially premixed flames, a random distribution of equivalence ratio following a bimodal distribution of equivalence ratio is introduced in the unburned reactants ahead of the flame. The simulation parameters in all of the cases were chosen such that the combustion situation belongs to the thin reaction zones regime. The DNS data has been used to analyse the behaviour of the dissipation rate transports of both active and passive scalars (i.e. the fuel mass fraction Y F and the mixture fraction ξ) in the context of Reynolds Averaged Navier–Stokes (RANS) simulations. The behaviours of the unclosed terms of the Favre averaged scalar dissipation rates of fuel mass fraction and mixture fraction (i.e. \(\widetilde {\varepsilon }_Y =\overline {\rho D\nabla Y_F^{\prime \prime } \cdot \nabla Y_F^{\prime \prime } } /\overline{\rho }\) and \(\widetilde {\varepsilon }_\xi =\overline {\rho D\nabla \xi ^{\prime \prime }\cdot \nabla \xi ^{\prime \prime }} /\overline {\rho })\) transport equations have been analysed in detail. In the case of the \(\widetilde {\varepsilon }_Y \) transport, it has been observed that the turbulent transport term of scalar dissipation rate remains small throughout the flame brush whereas the terms due to density variation, scalar–turbulence interaction, reaction rate and molecular dissipation remain the leading order contributors. The term arising due to density variation remains positive throughout the flame brush and the combined contribution of the reaction and molecular dissipation to the \(\widetilde {\varepsilon }_Y \) transport remains negative throughout the flame brush in all cases. However, the behaviour of scalar–turbulence interaction term of the \(\widetilde {\varepsilon }_Y \) transport equation is significantly affected by the relative strengths of turbulent straining and the straining due to chemical heat release. In the case of the \(\widetilde {\varepsilon }_\xi \) transport, the turbulent transport term remains small throughout the flame brush and the density variation term is found to be negligible in all cases, whilst the reaction rate term is exactly zero. The scalar–turbulence interaction term and molecular dissipation term remain the leading order contributors to the \(\widetilde {\varepsilon }_\xi \) transport throughout the flame brush in all cases that have been analysed in the present study. Performances of existing models for the unclosed terms of the transport equations of \(\widetilde {\varepsilon }_Y \) and \(\widetilde {\varepsilon }_\xi \) are assessed with respect to the corresponding quantities obtained from DNS data. Based on this exercise either suitable models have been identified or new models have been proposed for the accurate closure of the unclosed terms of both \(\widetilde {\varepsilon }_Y \) and \(\widetilde {\varepsilon }_\xi \) transport equations in the context of Reynolds Averaged Navier–Stokes (RANS) simulations.  相似文献   

2.
The head on quenching of statistically planar turbulent premixed flames by an isothermal inert wall has been analysed using three-dimensional Direct Numerical Simulation (DNS) data for different values of global Lewis number Le(0.8, 1.0 and 1.2) and turbulent Reynolds number Ret. The statistics of head on quenching have been analysed in terms of the wall Peclet number Pe (i.e. distance of the flame from the wall normalised by the Zel’dovich flame thickness) and the normalised wall heat flux Φ. It has been found that the maximum (minimum) value of Φ(Pe) for the turbulent Le=0.8 cases are greater (smaller) than the corresponding laminar value, whereas both Pe and Φ in turbulent cases remain comparable to the corresponding laminar values for Le=1.0 and 1.2. Detailed physical explanations are provided for the observed Le dependences of Pe and Φ. The existing closure of mean reaction rate \(\overline {\dot {\omega }}\) using the scalar dissipation rate (SDR) in the near wall region has been assessed based on a-priori analysis of DNS data and modifications to the existing closures of mean reaction rate and SDR have been suggested to account for the wall effects in such a manner that the modified closures perform well both near to and away from the wall.  相似文献   

3.
The correlation coefficient RuT between the streamwise velocity and temperature is investigated for the case of canonical shock-turbulence interaction, motivated by the fact that this correlation is an important component in compressible turbulence models. The variation of RuT with the Mach number, the turbulent Mach number, and the Reynolds number is predicted using linear inviscid theory and compared to data from DNS. The contributions from the individual Kovasznay modes are quantified. At low Mach numbers, the peak post-shock RuT is determined by the acoustic mode, which is correctly predicted by the linear theory. At high Mach numbers, it is determined primarily by the vorticity and entropy modes, which are strongly affected by nonlinear and viscous effects, and thus less well predicted by the linear theory.  相似文献   

4.
The structure of autoignition in a mixing layer between fully-burnt or partially-burnt combustion products from a methane-air flame at ? = 0.85 and a methane-air mixture of a leaner equivalence ratio has been studied with transient diffusion flamelet calculations. This configuration is relevant to scavenged pre-chamber natural-gas engines, where the turbulent jet ejected from the pre-chamber may be quenched or may be composed of fully-burnt products. The degree of reaction in the jet fluid is described by a progress variable c (c = taking values 0.5, 0.8, and 1.0) and the mixing by a mixture fraction ξ (ξ = 1 in the jet fluid and 0 in the CH4-air mixture to be ignited). At high scalar dissipation rates, N0, ignition does not occur and a chemically-frozen steady-state condition emerges at long times. At scalar dissipation rates below a critical value, ignition occurs at a time that increases with N0. The flame reaches the ξ = 0 boundary at a finite time that decreases with N0. The results help identify overall timescales of the jet-ignition problem and suggest a methodology by which estimates of ignition times in real engines may be made.  相似文献   

5.
In order to determine the mean rate of product creation within the framework of the Turbulent Flame Closure (TFC) model of premixed combustion, the model is combined with a simple closure of turbulent scalar flux developed recently by the present authors based on the flamelet concept of turbulent burning. The model combination is assessed by numerically simulating statistically planar, one-dimensional, developing premixed flames that propagate in frozen turbulence. The mean rate of product creation yielded by the combined model decreases too slowly at the trailing edges of the studied flames, with the effect being more pronounced at longer flame-development times and larger ratios of rms turbulent velocity u′ to laminar flame speed S L . To resolve the problem, the above closure of turbulent scalar flux is modified and the combination of the modified closure and TFC model yields reasonable behaviour of the studied rate. In particular, simulations indicate an increase in the mean combustion progress variable associated with the maximum rate by u′/S L , in line with available DNS data. Finally, the modified closure of turbulent scalar flux is validated by computing conditioned velocities and turbulent scalar fluxes in six impinging-jet flames. The use of the TFC model for simulating such flames is advocated.  相似文献   

6.
In the turbulent premixed reactive flows considered in this study, i.e. large Damköhler and Reynolds numbers, the flamelet regime of turbulent combustion applies and the scalar dissipation rate and mean reaction rate are inter related. In this situation various algebraic models for the mean chemical rate that are obtained from an equilibrium of the dominant terms of the transport equation for the scalar dissipation rate, are evaluated through their application to flames stabilized in a turbulent stagnating flow. An asymptotic analysis is first performed and results obtained through the resulting one-dimensional calculation are compared with the experimental data of Li et al. (Proc Combust Inst 25:1207–1214, 1994). Eventually, three-dimensional CFD calculations including suited algebraic closures to represent the turbulent transport terms are carried out. Results are satisfactorily compared to the experimental data of Cho et al. (Proc Combust Inst 22:739–745, 1988). As a first outcome, the analysis confirms the interest and the relevance of the corresponding algebraic closures to deal with turbulent premixed combustion in such conditions. In the search of a satisfactory representation of such premixed impinging flames, the computational results also clearly emphasize the strong intertwinment that exits between the mean reaction rate, i.e. scalar dissipation rate or micro-mixing taking place at the smallest scale of the reactive flowfield, and the Reynolds fluxes modelling, i.e. turbulent macro-mixing.  相似文献   

7.
The statistical behaviour of turbulent kinetic energy transport in turbulent premixed flames is analysed using data from three-dimensional Direct Numerical Simulation (DNS) of freely propagating turbulent premixed flames under decaying turbulence. For flames within the corrugated flamelets regime, it is observed that turbulent kinetic energy is generated within the flame brush. By contrast, for flames within the thin reaction zones regime it has been found that the turbulent kinetic energy decays monotonically through the flame brush. Similar trends are observed also for the dissipation rate of turbulent kinetic energy. Within the corrugated flamelets regime, it is demonstrated that the effects of the mean pressure gradient and pressure dilatation within the flame are sufficient to overcome the effects of viscous dissipation and are responsible for the observed augmentation of turbulent kinetic energy in the flame brush. In the thin reaction zones regime, the effects of the mean pressure gradient and pressure dilatation terms are relatively much weaker than those of viscous dissipation, resulting in a monotonic decay of turbulent kinetic energy across the flame brush. The modelling of the various unclosed terms of the turbulent kinetic energy transport equation has been analysed in detail. The predictions of existing models are compared with corresponding quantities extracted from DNS data. Based on this a-priori DNS assessment, either appropriate models are identified or new models are proposed where necessary. It is shown that the turbulent flux of turbulent kinetic energy exhibits counter-gradient (gradient) transport wherever the turbulent scalar flux is counter-gradient (gradient) in nature. A new model has been proposed for the turbulent flux of turbulent kinetic energy, and is found to capture the qualitative and quantitative behaviour obtained from DNS data for both the corrugated flamelets and thin reaction zones regimes without the need to adjust any of the model constants.  相似文献   

8.
The influences of fuel Lewis number LeF on localised forced ignition of globally stoichiometric stratified mixtures have been analysed using three-dimensional compressible Direct Numerical Simulations (DNS) for cases with LeF ranging from 0.8 to 1.2. The globally stoichiometric stratified mixtures with different values of root-mean-square (rms) equivalence ratio fluctuation (i.e. ?= 0.2, 0.4 and 0.6) and the Taylor micro-scale l? of equivalence ratio ? variation (i.e. l?/lf= 2.1, 5.5 and 8.3 with lf being the Zel’dovich flame thickness of the stoichiometric laminar premixed flame) have been considered for different initial rms values of turbulent velocity u. A pseudo-spectral method is used to initialise the equivalence ratio variation following a presumed bi-modal distribution for prescribed values of ? and l?/lf for global mean equivalence ratio 〈?〉=1.0. The localised ignition is accounted for by a source term in the energy transport equation that deposits energy for a stipulated time interval. It has been observed that the maximum values of temperature and the fuel reaction rate magnitude increase with decreasing LeF during the period of external energy deposition. The initial values of LeF, u/Sb(?=1), ? and l?/lf have been found to have significant effects on the extent of burning of the stratified mixtures following localised ignition. For a given value of u/Sb(?=1), the extent of burning decreases with increasing LeF. An increase in u leads to a monotonic reduction in the burned gas mass for all values of LeF in all stratified mixture cases but an opposite trend is observed for the LeF=0.8 homogeneous mixture. It has been found that an increase in ? has adverse effects on the burned gas mass, whereas the effects of l?/lf on the extent of burning are non-monotonic and dependent on ? and LeF. Detailed physical explanations have been provided for the observed LeF, u/Sb(?=1), ? and l?/lf dependences.  相似文献   

9.
The influences of fuel Lewis number Le F on localised forced ignition of inhomogeneous mixtures are analysed using three-dimensional compressible Direct Numerical Simulations (DNS) of turbulent mixing layers for Le F  = 0.8, 1.0 and 1.2 and a range of different root-mean-square turbulent velocity fluctuation u′ values. For all Le F cases a tribrachial flame has been observed in case of successful ignition. However, the lean premixed branch tends to merge with the diffusion flame on the stoichiometric mixture fraction isosurface at later stages of the flame evolution. It has been observed that the maximum values of temperature and reaction rate increase with decreasing Le F during the period of external energy addition. Moreover, Le F is found to have a significant effect on the behaviours of mean temperature and fuel reaction rate magnitude conditional on mixture fraction values. It is also found that reaction rate and mixture fraction gradient magnitude \(\vert \nabla \xi \vert \) are negatively correlated at the most reactive region for all values of Le F explored. The probability of finding high values of \(\vert \nabla \xi \vert \) increases with increasing Le F . For a given value of u′, the extent of burning decreases with increasing Le F . A moderate increase in u′ gives rise to an increase in the extent of burning for Le F  = 0.8 and 1.0, which starts to decrease with further increases in u′. For Le F  = 1.2, the extent of burning decreases monotonically with increasing u′. The extent of edge flame propagation on the stoichiometric mixture fraction ξ = ξ st isosurface is characterised by the probability of finding burned gas on this isosurface, which decreases with increasing u′ and Le F . It has been found that it is easier to obtain self-sustained combustion following localised forced ignition in case of inhomogeneous mixtures than that in the case of homogeneous mixtures with the same energy input, energy deposition duration when the ignition centre is placed at the stoichiometric mixture. The difficultly to sustain combustion unaided by external energy addition in homogeneous mixture is particularly prevalent in the case of Le F  = 1.2.  相似文献   

10.
In order to experimentally study whether or not the density ratio σ substantially affects flame displacement speed at low and moderate turbulent intensities, two stoichiometric methane/oxygen/nitrogen mixtures characterized by the same laminar flame speed S L = 0.36 m/s, but substantially different σ were designed using (i) preheating from T u = 298 to 423 K in order to increase S L , but to decrease σ, and (ii) dilution with nitrogen in order to further decrease σ and to reduce S L back to the initial value. As a result, the density ratio was reduced from 7.52 to 4.95. In both reference and preheated/diluted cases, direct images of statistically spherical laminar and turbulent flames that expanded after spark ignition in the center of a large 3D cruciform burner were recorded and processed in order to evaluate the mean flame radius \(\bar {R}_{f}\left (t \right )\) and flame displacement speed \(S_{t}=\sigma ^{-1}{d\bar {R}_{f}} \left / \right . {dt}\) with respect to unburned gas. The use of two counter-rotating fans and perforated plates for near-isotropic turbulence generation allowed us to vary the rms turbulent velocity \(u^{\prime }\) by changing the fan frequency. In this study, \(u^{\prime }\) was varied from 0.14 to 1.39 m/s. For each set of initial conditions (two different mixture compositions, two different temperatures T u , and six different \(u^{\prime })\), five (respectively, three) statistically equivalent runs were performed in turbulent (respectively, laminar) environment. The obtained experimental data do not show any significant effect of the density ratio on S t . Moreover, the flame displacement speeds measured at u′/S L = 0.4 are close to the laminar flame speeds in all investigated cases. These results imply, in particular, a minor effect of the density ratio on flame displacement speed in spark ignition engines and support simulations of the engine combustion using models that (i) do not allow for effects of the density ratio on S t and (ii) have been validated against experimental data obtained under the room conditions, i.e. at higher σ.  相似文献   

11.
We formulated a paradox in the theory of turbulent premixed flame in the flamelet regime: discrepancy between the Damköhler (1940) and Shelkin (1943) estimate of the turbulence flame speed \(U_{t} \sim {u}^{\prime }\) in the case of strong turbulence (\({u}^{\prime }>>S_{L} \)) and numerous experiments that show a strong dependence of Ut on the speed of the instantaneous flame SL. We name this discrepancy the Damköhler-Shelkin paradox. The first aim of the research is to validate and clarify this estimate, which is based on intuitive considerations, as the paradox must be a statement that seems contradictory to observations but is actually true. We analysed the turbulent flame in the context of the original hyperbolic combustion equation that directly describes the leading edge of the flame, which is a locus of the Zel’dovich “leading points” controlling the speed of the turbulent flame. Analysis of the corresponding characteristic equations results in the expression for speed on the steady-state turbulent flame \(U_{t} ={u}^{\prime }\sqrt {1+(S_{L} /{u}^{\prime })^{2}} \), which is the case when \({u}^{\prime }>>S_{L} \) becomes \(U_{t} \cong {u}^{\prime }\). This result confirms and improves the Damköhler-Shelkin estimate \(U_{t} \sim {u}^{\prime }\). The second aim is to resolve the Damköhler-Shelkin paradox. We explain the discrepancy with observations by the fact that turbulent flames are transient due to insufficient residence time in the real burners to reach statistical equilibrium of wrinkle structures of the random flame surface. We consider the transient flame in the intermediate asymptotic stage when the small-scales wrinkles are in statistical equilibrium, while at the same time the large-scale wrinkles are far from equilibrium. The expressions for the flame speed and width, which we deduce using the dimensional analysis and general properties of the ransom surface, \(U_{t} \sim ({u}^{\prime }S_{L})^{1/2}\) and \(\delta _{t} \sim ({u}^{\prime }Lt)^{1/2}\), show that this transient flame is in fact a turbulent mixing layer travelling with constant speed Ut depending on SL, the intermediate steady propagation (ISP) flame. Qualitative estimations of the times required for the small-scale and large-scale wrinkles to reach statistical equilibrium show that the turbulent Bunsen- and V-flames correspond to the intermediated asymptotic stage, and the turbulent flames with a complete equilibrium structure of the wrinkled flamelet surface are not attainable under laboratory conditions. We present the results of numerical simulations of the impingent flames, which count in favour of the belief that these flames are also transient.  相似文献   

12.
A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.  相似文献   

13.
We numerically study spray-flame dynamics. The initial state of the spray is schematized by alkane droplets located at the nodes of a face-centered 2D-lattice. The droplets are surrounded by a gaseous mixture of alkane and air. The lattice spacing s reduced by the combustion length scale is large enough to consider that the chemical reaction occurs in a heterogeneous medium. The overall spray equivalence ratio is denoted by ?T, with ?T = ?L + ?G, where ?G corresponds to the equivalence ratio of the gaseous surrounding mixture at the initial saturated partial pressure, while ?L is the so-called liquid loading. To model such a heterogenous combustion, the retained chemical scheme is a global irreversible one-step reaction governed by an Arrhenius law, with a modified heat of reaction depending on the local equivalence ratio. ?T is chosen in the range 0.9 ≤ ?T ≤ 2. Three geometries (s = 3, s = 6, s = 12) and four liquid loadings, ?L = 0.3, ?L = 0.5, ?L = 0.7, ?L = 0.85 are studied. In the rich sprays, our model qualitatively retrieves the recent experimental measurements: the rich spray-flames can propagate faster than the single-phase flames with the same overall equivalence ratio. To analyse the conditions for this enhancement, we introduce the concept of “spray Peclet number”, which compares the droplet vaporization time with the combustion propagation time of the single-phase flame spreading in the fresh surrounding mixture.  相似文献   

14.
15.
16.
We consider the asymptotic behavior of solutions of systems of inviscid or viscous conservation laws in one or several space variables, which are almost periodic in the space variables in a generalized sense introduced by Stepanoff and Wiener, which extends the original one of H. Bohr. We prove that if u(x,t) is such a solution whose inclusion intervals at time t, with respect to ?>0, satisfy l epsiv;(t)/t→0 as t→∞, and such that the scaling sequence u T (x,t)=u(T x,T t) is pre-compact as t→∞ in L loc 1(? d +1 +, then u(x,t) decays to its mean value \(\), which is independent of t, as t→∞. The decay considered here is in L 1 loc of the variable ξ≡x/t, which implies, as we show, that \(\) as t→∞, where M x denotes taking the mean value with respect to x. In many cases we show that, if the initial data are almost periodic in the generalized sense, then so also are the solutions. We also show, in these cases, how to reduce the condition on the growth of the inclusion intervals l ?(t) with t, as t→∞, for fixed ? > 0, to a condition on the growth of l ?(0) with ?, as ?→ 0, which amounts to imposing restrictions only on the initial data. We show with a simple example the existence of almost periodic (non-periodic) functions whose inclusion intervals satisfy any prescribed growth condition as ?→ 0. The applications given here include inviscid and viscous scalar conservation laws in several space variables, some inviscid systems in chromatography and isentropic gas dynamics, as well as many viscous 2 × 2 systems such as those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial viscosity, among others. In the case of the inviscid scalar equations and chromatography systems, the class of initial data for which decay results are proved includes, in particular, the L generalized limit periodic functions. Our procedures can be easily adapted to provide similar results for semilinear and kinetic relaxations of systems of conservation laws.  相似文献   

17.
The effects of global Lewis number Le on the statistical behaviour of the unclosed terms in the transport equation of the Favre-filtered scalar dissipation rate (SDR) Ñ c have been analysed using a Direct Numerical Simulation (DNS) database of freely propagating statistically planer turbulent premixed flames with Le ranging from 0.34 to 1.2. The DNS data has been explicitly filtered to analyse the statistical behaviour of the unclosed terms in the SDR transport equation arising from turbulent transport T 1, density variation due to heat release T 2, scalar-turbulence interaction T 3, reaction rate gradient T 4, molecular dissipation (?D 2) and diffusivity gradients f(D) in the context of Large Eddy Simulations (LES). It Le has significant effects on the magnitudes of T 1, T 2, T 3, T 4, (?D 2) and f(D). Moreover, both qualitative and quantitative behaviours of the unclosed terms T 1, T 2, T 3, T 4, (?D 2) and f(D) are found to be significantly affected by the LES filter width Δ, which have been explained based on a detailed scaling analysis. Both scaling analysis and DNS data suggest that T 2, T 3, T 4, (?D 2) and f(D) remain leading order contributors to the SDR \(\tilde {{N}}_{c} \) transport for LES. The scaling estimates of leading order contributors to the SDR \(\tilde {{N}}_{c} \) transport has been utilised to discuss the possibility of extending an existing SDR model for Reynolds Averaged Navier Stokes (RANS) simulation for SDR \(\tilde {{N}}_{c} \) closure in the context of LES of turbulent premixed combustion.  相似文献   

18.
The effects of mean flame curvature on reaction progress variable gradient, $\nabla c$ , alignment with local turbulent strain rate are studied based on three-dimensional Direct Numerical Simulation (DNS) data of turbulent premixed flame kernels with different initial radii under decaying turbulence. A statistically planar flame is also considered in order to compare the results obtained from the kernels with a flame of zero mean curvature. It is found that the dilatation rate effects diminish with decreasing kernel radius due to defocusing of heat in the positively curved regions. This gives rise to a decrease in the extent of reaction progress variable gradient alignment with most extensive principal strain rate with decreasing kernel radius. The modelling implications of the statistics of the alignment of $\nabla c$ with local strain rate have been studied in terms of scalar dissipation rate transport. A new modelling methodology for the contribution of the scalar-turbulence interaction term in the transport equation for the mean scalar dissipation is suggested addressing the reduced effects of dilatation rate for flame kernels and the diminished value of turbulent straining at the small length scales at which turbulence interacts with small flame kernels. The performance of the new models is found to be satisfactory while comparing to DNS results. The existing models for the dilatation contribution and the combined chemical reaction and molecular dissipation contributions to the transport of mean scalar dissipation, which were originally proposed for statistically planar flames, are found to satisfactorily predict the corresponding quantities for turbulent flame kernels.  相似文献   

19.
Statistically planar turbulent partially premixed flames for different initial intensities of decaying turbulence have been simulated for global equivalence ratios <????> = 0.7 and <????> = 1.0 using three-dimensional simplified chemistry based Direct Numerical Simulations (DNS). The simulation parameters are chosen such that the combustion situation belongs to the thin reaction zones regime and a random bi-modal distribution of equivalence ratio ?? is introduced in the unburned gas ahead of the flame to account for mixture inhomogeneity. The DNS data has been used to analyse the statistical behaviour of the transport of the cross-scalar dissipation rate based on the fuel mass fraction Y F and the mixture fraction ?? fluctuations $\,\tilde{\varepsilon}_{Y\xi}={\overline{\rho D\nabla Y_{F}^{\prime\prime}.\nabla \xi^{\prime\prime}} } \big/ {\bar {\rho }}$ (where $\bar{q}$ , $\tilde{q}={\overline{\rho q} } \big/ {\bar {\rho }}$ and $q^{\prime\prime} =q-\tilde {q}$ are Reynolds average, Favre mean and Favre fluctuation of a general quantity q) in the context of Reynolds Averaged Navier?CStokes simulations where ?? is the gas density and D is the gas diffusivity. The statistical behaviours of the unclosed terms in the $\tilde{\varepsilon }_{Y\xi } $ transport equation originating from turbulent transport T 1, density variation T 2, scalar?Cturbulence interaction T 3, chemical reaction rate T 4 and the molecular dissipation rate D 2 have been analysed in detail. It has been observed that the contributions of T 2, T 3, T 4 and D 2 play important roles in the $\tilde{\varepsilon }_{Y\xi } $ transport for the globally stoichiometric cases, but in the globally fuel-lean cases the contributions of T 2 and T 4 become relatively weaker in comparison to the contributions of T 3 and D 2. The term T 1 remains small in comparison to the leading order contributions of T 3 and D 2 for all cases, but the contribution of T 1 plays a more important role in the low Damköhler combustion cases. The term T 2 behaves as a sink term towards the unburned gas side but becomes a source term towards the burned gas side. The scalar?Cturbulence interaction term T 3 has been found to be generally positive throughout the flame brush, but in globally stoichiometric cases the contribution of T 3 becomes negative in regions of intense heat release. The combined contribution of (T 4 ?C D 2) remains mostly as a sink in all cases studied here. Models are proposed for the unclosed terms of the $\tilde{\varepsilon }_{Y\xi } $ transport equation in the context of Reynolds Averaged Navier?CStokes simulations, which are shown to satisfactorily predict the corresponding quantities extracted from the DNS data for all cases.  相似文献   

20.
In the present paper, we use the conformal mapping z/c = ζ?2a sin ζ (a, c?const, ζ = u + iv) of the strip {|v| ≤ v 0, |u| < ∞} onto the domain D, which is a strip with symmetric periodic cuts. For the domain D, in the orthogonal system of isometric coordinates u, v, we solve the plane elasticity problem. We seek the biharmonic function in the form F = C ψ 0 + S ψ*0 + x(C ψ 1 ? S ψ 2) + y(C ψ 2 + S ψ 1), where C(v) and S(v) are the operator functions described in [1] and ψ 0(u), …, ψ 2(u) are the desired functions. The boundary conditions for the function F posed for v = ±v 0 are equivalent to two operator equations for ψ 1(u) and ψ 2(u) and to two ordinary differential equations of first order for ψ 0(u) and ψ*0(u) [2]. By finding the functions ψ j (u) in the form of trigonometric series with indeterminate coefficients and by solving the operator equations, we obtain infinite systems of linear equations for the unknown coefficients. We present an efficient method for solving these systems, which is based on studying stable recursive relations. In the present paper, we give an example of analysis of a specific strip (a = 1/4, v 0 = 1) loaded on the boundary v = v 0 by a normal load of intensity p. We find the particular solutions corresponding to the extension of the strip by the longitudinal force X and to the transverse and pure bending of the strip due to the transverse force Y and the constant moment M , respectively. We also present the graphs of normal and tangential stresses in the transverse cross-section x = 0 and study the stress concentration effect near the cut bottom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号