首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider monolayer polymer films with oriented droplets of a nematic liquid crystal (LC). Relations for the coherent transmission coefficients of a layer of oriented ellipsoidal droplets and for the intensity of light scattered by monolayers of spherical and spheroidal droplets have been obtained. The amplitude-phase screen model and the interference approximation of the theory of multiple wave scattering have been used. To describe light scattering by an individual ellipsoidal droplet with inhomogeneous surface binding, we have developed an anomalous diffraction approximation. For monolayers of spherical LC droplets, the coherent scattering coefficients and the angular scattering structure have been analyzed. The internal structure of nematic droplets have been calculated by the relaxation method based on the solution of the minimization problem of the free energy volume density. We have studied basic regular features of light scattering by a monolayer with homogeneous and inhomogeneous boundary conditions at the LC-polymer interface. We show that, for films that contain droplets with inhomogeneous boundary conditions of the tangentially normal type, the angular structure of the scattered light is asymmetric with respect to the polar scattering angle.  相似文献   

2.
A method for computing the coherent transmittance of a film of polymer dispersed nematic liquid crystals aligned by an external field in the case of an oblique incidence of light is developed, and a theoretical analysis of this quantity is performed. The effects of close packing are considered in terms of the interference approximation of the theory of multiple wave scattering. The correlation arising in the spatial distribution of polydisperse droplets is taken into account by introducing partial distribution functions. It is shown that an increase in the concentration of liquid crystal droplets is accompanied by an increase in the coherent transmittance of the film.  相似文献   

3.
We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing the volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ s and–θ s relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.  相似文献   

4.
New computer modelling of light scattering and its propagation through liquid crystal has been presented using T-matrix method in the structural phase transition regions. Numerical aspects of light scattering process, which are based on numerically solving Maxwell's equations, were calculated for some nematic liquid crystals. Firstly, we described in detail T-matrix method for computing light scattering from nematic liquid crystals and presented results of benchmark computations for the considered model. We reported results of extensive calculations for polydisperse, randomly oriented rod-like multilayered systems (nematic liquid crystals). Our results are associated with light scattering by ferroelectric and ferroelastic materials.  相似文献   

5.
A method is developed for analyzing the state of polarization of a plane wave transmitted through a polymer-dispersed liquid-crystal (PDLC) film with nanosized liquid-crystal (LC) droplets. This method is based on the anisotropic-dipole approximation for describing scattering by a separate droplet and on the Foldy-Twersky approximation for describing propagation of light in a film. Equations are obtained that relate the ellipsometric parameters of coherent (direct) light transmitted through a PDLC film to the order parameters that characterize the morphological and structural properties of the film. Elliptic and circular polarizations and the rotation of the plane of polarization of a wave transmitted through a film are investigated under the normal illumination of the PDLC film by a linearly polarized plane wave. The order parameters of the PDLC film are determined as a function of a control field under the transition from a partially ordered structure of optical axes of LC droplets to a homeotropic structure.  相似文献   

6.
A liquid crystal optical device made of an optically anisotropic heterostructure is considered. The device consists of a cholesteric liquid crystal (CLC) layer sandwiched by two phase-shifting anisotropic layers of a nematic liquid crystal (NLC). In this structure each of the NLC layers is a quarterwave plate. The problem is solved both by Ambartsumian’s method of layer addition and Muller’s matrix method. The peculiarities of reflection spectra, eigen polarizations, rotation of polarization plane and polarization ellipticity are studied. It is shown that this device can work as a light modulator or a system for obtaining linearly polarized light with electrically tunable rotation of the polarization plane (which is especially important for optical communication), as well as a device for obtaining the linearly polarized light from a non-polarized one.  相似文献   

7.
Light scattering by an optically anisotropic liquid crystal (LC) droplet of a nematic in an isotropic polymer matrix is considered in the Wentzel–Kramers–Brillouin (WKB) approximation. General relations are obtained for elements of the amplitude matrix of light scattering by a droplet of arbitrary shape and for the structure of the director field. Analytic expressions for the amplitude matrices are derived for spherical LC droplets with a uniformly oriented structure of local optical axes for strictly forward and strictly backward scattering. The efficiency factors of extinction and backward scattering for a spherical nonabsorbing LC droplet depending on the LC optical anisotropy, refractive index of the polymer, illumination conditions, and orientation of the optical axis of the droplet are analyzed. Verification of the obtained solutions has been performed.  相似文献   

8.
We consider multiple light scattering in a nematic liquid crystal. Using the Monte Carlo method, we calculate for the first time the effect of a magnetic field on the shape of the peak of coherent backscattering taking into account the long-range action of fluctuations of the orientational order and anisotropy of the scattering length. For a small number of initial and final scattering events, we take into account the ordinary mode of light, which is weakly scattered in a nematic liquid crystal (NLC), whereas a strongly scattered extraordinary mode is taken into account for all scattering events. For simplicity, we use a single-constant approximation of the NLC elastic moduli. We show that the angular shape of the peak of coherent backscattering remains nearly unchanged, whereas the magnetic field and the scattering phase function vary by several orders of magnitude.  相似文献   

9.
The structural features, as well as the optical and electrophysical properties of a 5CB nematic liquid crystal with additions of multilayer carbon nanotubes, have been investigated in the concentration range C = 0.0025–0.1 wt %. The self-aggregation of nanotubes into clusters with a fractal structure occurs in the liquid crystal. At 0.025 wt %, the clusters are merged, initiating the percolation transition of the composite to a state with a high electric conductivity. The strong interaction of 5CB molecules with the surface of nanotube clusters is responsible for the formation of micron surface liquid crystal layers with an irregular field of elastic stresses and a complex structure of birefringence. They are easily observed in a polarization microscope and visualize directly invisible submicron nanotube aggregates. Their transverse size increases when an electric field is applied to the liquid crystal cell. Two mechanisms of the generation of optical singularities in the passing laser beam have been revealed. Optical vortices appear in the speckle fields of laser radiation scattered at the indented boundaries of the nanotube clusters, whereas the birefringence of the beam in surface liquid-crystal layers is accompanied by the appearance of polarization C points.  相似文献   

10.
An optical method is proposed to reconstruct the order parameter for liquid crystal droplets with rigidly fixed poles. The method is based on measurements of the coherent transmission coefficient of a oneatom layer (monolayer) of polymer-dispersed liquid crystal droplets and on comparison with the results of the solution of the direct problem. In solving the direct problem for determining the coherent transmission coefficient of the polymer-dispersed liquid crystal monolayer, the anomalous diffraction approximation and the approximation of the effective refractive indices for liquid crystal droplets were used. The capabilities of the method are illustrated by the reconstruction of one component of the diagonal tensor of the droplet order parameter.  相似文献   

11.
We present the results of our investigations of electrooptical effects that occur as a result of light scattering by an aqueous polydisperse system the disperse phase of which consists of nickel hydrosilicate nanotubes with a chrysotile structure. Multilayer nanotubes were synthesized by the hydrothermal method and had the composition Ni3Si2O5. The dimensions of nanotubes were as follows: the length was 0.1–1 μm or more, the outer diameter was 10–15 nm, and the inner diameter was 3 nm. We have studied relative changes in the intensities of light transmitted and scattered by the suspension that were caused by the orientation of nanotubes in an external electric field. Experiments have been performed at different directions of the linear polarization of the incident and scattered light, different scattering angles, and different degrees of orientation of nanotubes along the field. These measurements allowed us to determine the magnitude of electrooptical effects, such as the conservative dichroism, the light scattering, and the influence of the orientation of nanotubes in the field on the intensity and degree of depolarization of light scattered by them. Curves of free relaxation of electrooptical effects and their field dependences allowed us to determine the distributions of nanotubes and their aggregates in the colloid over lengths and polarizability anisotropy values. The dependences of the degree of depolarization of the scattered radiation on the scattering angle and the relaxation dependences of electrooptical effects allowed us to characterize the aggregation stability of nanotubes in water.  相似文献   

12.
聚合物网络稳定液晶的电光偏振片   总被引:2,自引:0,他引:2  
制备了一种散射偏振片,它是由非晶态单体形成的聚合物网络、向列液晶和涂有聚酰亚胺的ITO玻璃基板组成。聚酰亚胺被反向平行摩擦,液晶分子则沿摩擦方向取向,并被单体形成的网络所稳定。根据聚合物网络液晶的电光特性可知。入射偏振光束被散射或透射相应地取决于其偏振方向平行还是生趣于基板的摩擦方向。平行时,光的散射强度通过电场可被强烈地调节;垂直时,光的透过率很高,几乎不依赖施加的电场。这种偏振器件具有低的驱动  相似文献   

13.
An optically switchable, polarization-independent holographic polymer dispersed liquid crystal (H-PDLC) transmission grating is demonstrated by adding azobenzene-LC and chiral molecules into the H-PDLC formulation. The optical switchable mechanism is from the trans-cis photoisomerization of the doped azobenzene-LC, which modulates the refractive index of the LC rich area. The dependence of the diffraction efficiency of the H-DPLC grating without chiral molecules on light polarization suggests that the orientation of LC directors within the droplet is ellipsoidal and uniaxial. However, the addition of chiral molecules into the H-PDLC formulation helps the formation of isotropic and non-uniaxial LC directors within the droplets. The polarization properties of the grating are investigated and analyzed by the coupled and modified coupled wave theory with a model of sinusoidal dielectric modulation. The results show that the addition of chiral molecules changes the LC phase from nematic to chiral-nematic, where the grating efficiency, which is modulated by the photoinduced phase transition, is independent of the polarization of incident light. Our findings may help improve optical systems that utilize non-polarized light.  相似文献   

14.
The optical Freedericksz transition in a homeotropic nematic liquid crystal cell is modeled using a solver which combines direct solution of Maxwell’s equations with a relaxation algorithm for the liquid crystal director. We find that even in the equal elastic constant case the continuous optical Freedericksz transition can be driven first order. For films in which the optical retardation of the extraordinary wave is sufficiently large, a whole set of discontinuous jumps in transmission coefficient can occur. These jumps correspond to the existence of optical resonances in the liquid crystal film. Our results agree in the short wavelength limit with paraxial approximation calculations, and provide a strong test of the FDTD method for anisotropic materials such as liquid crystals.  相似文献   

15.
Due to the fact that it is possible to manipulate light with photonic crystals (PCs), PCs hold a great potential for designing new optical devices. There has been an increase in research on tuning the optical properties of PCs to design devices. We presented a numerical study of optical properties of metamaterial-based devices by liquid crystal infiltration. The plane wave expansion method and finite-difference time-domain method for both TE and TM modes revealed optical properties in photonic crystal structures in an air background for a square lattice. E7 type has been used as a nematic liquid crystal and SrTiO3 as a ferroelectric material. We showed the possibility of the metamaterials for a two-dimensional photonic crystal cavity on a ferroelectric base infiltrated with a nematic liquid crystal.  相似文献   

16.
The geometry of distributions of the polarization of light in conoscopic patterns of planar oriented nematic and cholesteric liquid crystal (LC) cells is described in terms of the polarization singularities including C-points (points of circular polarization) and L lines (lines of linear polarization). Conditions for the formation of polarization singularities (C-points) in an ensemble of conoscopic patterns parametrized by the polarization azimuth and ellipticity of the incident light wave have been studied. A characteristic feature of these conditions is selectivity with respect to the polarization parameters of the incident light wave. The polarization azimuth and ellipticity are determining parameters for nematic and cholesteric LC cells, respectively.  相似文献   

17.
《Composite Interfaces》2013,20(4-6):477-486
The present work deals with the preparation of new liquid crystalline cellulose dispersed liquid crystal films (100 μm) using a shearing casting technique. The matrix of the films presents the so-called band texture perpendicular to the shear direction. The nematic low molecular weight liquid crystal is encapsulated in micron and submicron size ellipsoids. The ratio between the lengths of the main axis and the short axis is around 1.23. The main axis is oriented, on average, 28° away from the shear direction. The evolution of the band texture and of the ellipsoidal liquid crystal droplets is investigated by polarizing optical microscopy and light scattering techniques as a function of the strain imposed along and perpendicular to the shear direction. Stretch along shear with strain equal to 0.8 seems to have no effect on the banded structure of the matrix, while the nematic liquid crystal ellipsoids slightly orient the main axis to the stress direction and their shape anisotropy increases by a factor of 2. Deformation in the direction transverse to the shear direction induces a deep change of the polymeric matrix and, at the end, a fibrillar structure is found. The nematic ellipsoids rotate their main axis and align along the stretch direction. Their shape anisotropy evolves from a value of 1.23 to 1 for intermediate deformations with strain equal to 0.5, to a final value of 5 with strain equal to 0.8, in the perpendicular direction.  相似文献   

18.
We use Z-scan technique to investigate the nonlinear optical response of the thermotropic liquid crystal E7 in the neighborhood of the nematic-isotropic phase transition. The analysis of the data for the nonlinear optical birefringence is compatible with an effective critical exponent of the order parameter, β = 0.28 ± 0.03, which is close to the classical value, β = 0.25 , for a tricritical point. The nonlinear optical absorption in the nematic range depends on the geometrical configuration of the nematic director with respect to the polarization beam, and vanishes in the isotropic phase.  相似文献   

19.
As light passes through scattering media, certain specific features of the polarization of radiation manifest themselves. The paper presents materials on this problem that were obtained at the Institute of Physics of the National Academy of Sciences of Belarus over recent decades. Results of experimental investigations of media that model real objects are described for the case where the dimensionless optical parameters of media and objects coincide. A method for determining the position of a diffuse light source in the atmosphere via predominant oscillations of the light vector of scattered radiation for two directions of observation is proposed. The structure of aerosol formations (smokes, dust and liquid-droplet and crystalline clouds) is interpreted based on the character of depolarization of laser radiation sounding atmosphere. The polarization of laser radiation passing through a turbid medium and reflected from it is studied. Practical applications are proposed. Fundamentals of an applied vector theory of radiation transfer, which made it possible to considerably expand notions of light scattering in strongly turbid media, are given. Studies of light propagation in encapsulated liquid crystals, which are used for solving of a large number of problems, are described. In these objects, ordinary and extraordinary rays that arise in crystals under electric voltage can give rise to a wave that is attenuated to a different degree and whose phase and polarization characteristics are varying.  相似文献   

20.
We propose an analytical model of the spatio-temporal structure of a short laser pulse transmitted through a layer of an optically inhomogeneous medium with high anisotropy of scattering. The light-field brightness in the medium is represented as a finite series in terms of multiplicities of the small-angle scattering, while the contribution from the higher-order scattering is allowed for as a quasi-diffuse component. The scattered-pulse structure is calculated on the basis of solving the radiative-transfer equation in the small-angle approximation with allowance for the effect of multipath light propagation. Compared with the first approximation of the multiple-scattering theory (attenuated nonscattered light plus the diffuse component), this approach makes it possible to describe more correctly the transformation of the spatio-angular distribution of light in the medium when passing from the single-scattering to multiple-scattering regime, as well as specify the temporal profile of the scattered pulse. The temporal profile of the femtosecond pulse transmitted through a layer of model scattering medium with various concentrations of scatterers is studied experimentally. The blurred-pulse structure is studied with the help of nonlinear optical gating in the case of noncollinear generation of the second harmonic. Good agreement between the theoretical and experimental time profiles of the scattered pulse is shown for the optical-thickness intervals corresponding to both the predominantly low multiplicity scattering and multiple small-angle scattering, which allows us to use the proposed analytical model for solving the inverse problem of the pulse sounding of a homogeneous turbid medium. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 4, pp. 333–348, April 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号