首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
翟学萍  尤慧艳 《色谱》2018,36(3):317-324
制备了Au@4-硝基苯硫酚@Ag内标化表面增强拉曼散射(SERS)探针,进一步以牛血清白蛋白(BSA)置换探针表面的稳定剂十六烷基三甲基溴化铵(CTAB),发展了Au@NT@Ag@BSA内标化SERS探针。Au@NT@Ag@BSA探针保留了原探针的单分散性和高灵敏度,同时显著提高了信号稳定性和生物相容性。进一步将Au@NT@Ag@BSA探针和SMMC7721肺癌细胞共孵育,实现了细胞的探针标记和拉曼光谱成像。Au@NT@Ag@BSA内标化SERS探针在活体生物成像等方面展示了良好的应用潜力。  相似文献   

2.
A study of the interaction between paraquat (methyl viologen) and humic acids, extracted from a soil amended over 30 years with crop residues, cow slurries and cattle manure, was carried out by two emission spectroscopies based on plasmonic effects: surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). To carry out this study Ag nanoparticles were used. The complex formation was tested by analyzing the effect of the herbicide on humic acids, and by varying experimental parameters such as the pH and the laser excitation wavelength. The study of the vibrational bands led to infer information about the interaction mechanism of paraquat with humic acids and to find a correlation between this interaction and the humic acids structural modification induced by the different amendments added to soil.  相似文献   

3.
Bisphenol A (BPA) is well known for its use in plastic manufacture and thermal paper production despite its risk of health toxicity as an endocrine disruptor in humans. Since the publication of new legislation regarding the use of BPA, manufacturers have begun to replace BPA with other phenolic molecules such as bisphenol F (BPF) and bisphenol B (BPB), but there are no guarantees regarding the health safety of these compounds at this time. In this context, a very simple, cheap and fast surface-enhanced Raman scattering (SERS) method was developed for the sensitive detection of these molecules in spiked tap water solutions. Silver nanoparticles were used as SERS substrates. An original strategy was employed to circumvent the issue of the affinity of bisphenols for metallic surfaces and the silver nanoparticles surface was functionalized using pyridine in order to improve again the sensitivity of the detection. Semi-quantitative detections were performed in tap water solutions at a concentrations range from 0.25 to 20 μg L−1 for BPA and BPB and from 5 to 100 μg L−1 for BPF. Moreover, a feasibility study for performing a multiplex-SERS detection of these molecules was also performed before successfully implementing the developed SERS method on real samples.  相似文献   

4.
《Analytical letters》2012,45(13):2063-2074
The interaction of 6-thioguanine and human serum albumin was investigated by fluorescence, ultraviolet-visible absorption, and surface-enhanced Raman scattering. The fluorescence of human serum albumin decreased with the concentration of 6-thioguanine, and the fluorescence quenching of human serum albumin by 6-thioguanine was static. Molecular modeling showed that 6-thioguanine was located in the hydrophobic cavity in subdomain IIA of human serum albumin. Surface-enhanced Raman scattering was combined with density function theory to characterize the orientation of 6-thioguanine on gold and the 6-thioguanine functional groups bonded to human serum albumin. The 6-thioguanine was shown to be tilted on the gold surface by a N-C?S moiety. The binding sites of 6-thioguanine to human serum albumin were the NH and amino groups of the pyrimidine ring of 6-thioguanine. This study may provide information regarding the metabolism of anticancer pharmaceuticals in the human body and assist in the development of effective compounds.  相似文献   

5.
1 Introduction Studies on the interaction of the complexes formed between proteins and amphiphilic molecules in aque- ous solutions have become a new focus and great pro- gress has been made in recent years[1―5]. An under- standing of these systems is of great importance in many biological processes and clinical use of drugs. The globular anionic protein human serum albumin (HSA) is widely used as a protein model in many studies[1―4,6]. Its principal function is to transport fatty acids an…  相似文献   

6.
Surface-enhanced Raman scattering (SERS) provides vibrational information about molecules that are located within several nanometers of the surface of a metallic nanoparticle. This review describes the various challenges and successes of applying SERS inside living cells in order to gain information about the internal structure and dynamic processes occurring in the intracellular matrix. In particular, the challenges associated with the introduction of metal nanoparticles into cells are described, as well as the complexity of interpreting SERS spectra from within complex biological environments. Strategies for understanding and improving the specificity of SERS in vivo are also presented.
Katherine A. WilletsEmail:
  相似文献   

7.
Silanized support based SERS substrate is applied to detect chrysoidin in Sprite at 0.01 mg/L and malachite green in fish pond water at 0.0001 mg/L. The SERS method is sensitive, cost-effective and convenient, which has great potential in detection of illegal additives and harmful substances.  相似文献   

8.
Surface-enhanced Raman scattering (SERS) of 4,4′-azopyridine (AZPY) on silver foil substrate was measured under 1064 nm excitation lines. Density-functional theory (DFT) methods were used to calculate the structure and vibrational spectra of models such as Ag–AZPY, Ag4–AZPY and Ag6–AZPY complexes with B3LYP/6-31++G(d,p)(C,H,N)/Lanl2dz(Ag) basis set. The Raman bands of AZPY were identified on the ground of analog computation of potential energy distribution. The calculated spectra of Ag4–AZPY and Ag6–AZPY models were much approximated to the experimental results than that of Ag–AZPY model. The DFT results showed that the angles between two pyridyl rings keep 0° from AZPY to Ag–AZPY, Ag4–AZPY and Ag6–AZPY model. The energy gaps between the HOMO and LUMO changed from 363 to 1140 nm for AZPY-Ag complexes according to the DFT results. An conclusion was conceived that chemical enhancement mechanism may play an important role in the SERS of AZPY on silver substrate.  相似文献   

9.
Human serum albumin (HSA) is a very important transporter protein in the circulatory system. It is a multi-domain binding protein, which binds a wide variety of ligands in its multiple binding sites and aids in transport, distribution and metabolism of many endogenous and exogenous ligands. With change in pH, HSA is known to undergo conformational transformation, which is very essential for picking up and releasing them at sites of differing pH inside physiological system. Hence, the characterization of ligand binding to these pH-induced conformers is extremely important. We have explored binding interaction of a ligand protoporphyrin IX (PPIX), which is demonstrated (X-ray crystallography) to reside in domain-IB at the various pH-induced folded states of HSA. The ligand PPIX is found to remain attached to all the HSA conformers which offers an opportunity to use Förster’s resonance energy transfer (FRET) between an intrinsic donor fluorophore (Trp214) located in domain-IIA to the acceptor ligand PPIX to characterize the inter-domain separation between IB and IIA. Additionally FRET between an extrinsic fluorophore 2-p-toluidinylnaphthalene-6-sulfonate (TNS) located in domain-IIIA and PPIX is also undertaken to quantify the inter-domain separation between IB and IIIA. Circular dichroism (CD) and dynamic light scattering (DLS) studies have been done in conjunction with picosecond time resolved fluorescence and polarization-gated spectroscopy to determine, respectively, the secondary and tertiary structures of various pH-induced folded states of the protein. Severe structural perturbation including swelling of the protein is observed in the low pH-induced conformer of HSA as evidenced from all the techniques used.  相似文献   

10.
制备了TiO2溶胶,并通过透射电子显微镜等对其结构进行了表征。研究了TiO2溶胶与人血清白蛋白(HSA)的相互作用。基于HSA对TiO2溶胶二级散射峰的增强作用,建立了二级散射光谱法测定痕量白蛋白的新方法。方法的线性范围是0.005~1.5 mg/L,检出限为3.5μg/L。方法用于人血中HSA的测定,回收率为98%~100.2%。  相似文献   

11.
By means of the resonance light scattering (RLS) technique, a new method was developed to determine the bovine serum albumin (BSA) and human serum albumin (HSA) by the interaction of serum albumin with poly(diallyldimethylammonium chloride) (PDDA). At Tris-NaOH buffer solution, the RLS intensity of serum albumin at the wavelength 320, 550 and 590 nm was obviously enhanced in the presence of PDDA. The influences of some experimental factors, including incubation time, addition sequence of reagents, pH value, concentration of PDDA and foreign substances, on the enhancement of the RLS intensity were examined. The optimum conditions of the experiment were selected. Under the selected experimental condition, the enhanced RLS intensities were directly proportional to the concentrations in the range of (0.0250-2.75)x10(-6) mol/L for BSA and (0.0235-1.17)x10(-6) mol/L for HSA. The detection limits (S/N=3) were 8.40x10(-9) mol/L for BSA and 7.39x10(-9) mol/L for HSA. The synthetic samples were analysed and the results obtained were satisfactory.  相似文献   

12.
13.
Ruan C  Wang W  Gu B 《Analytica chimica acta》2006,567(1):114-120
Perchlorate (ClO4) has recently emerged as a widespread environmental contaminant found in groundwater and surface water, and there is a great need for rapid detection and monitoring of this contaminant. This study presents a new technique using cystamine-modified gold nanoparticles as a substrate for surface-enhanced Raman scattering (SERS) detection of perchlorate at low concentrations. A detection limit of 5 × 10−6 M (0.5 mg/L) has been achieved using this method without sample preconcentration. This result was attributed to a strong plasmon enhancement by gold metal surfaces and the electrostatic attraction of ClO4 onto positively charged, cystamine-modified gold nanoparticles at a low pH. The methodology also was found to be reproducible, quantitative, and not susceptible to significant interference from the presence of anions such as sulfate, phosphate, nitrate and chloride at concentrations <1 mM, making it potentially suitable for rapid screening and routine analysis of perchlorate in environmental samples.  相似文献   

14.
Capillary electrophoresis (CE) is a powerful technique for enantiomer separations due to its intrinsic high separation efficiencies, speed of analysis, low reagent consumption and small sample requirements. However, some chiral selectors present strong background UV absorption providing high detection limits. The present paper deals with the application of the partial-filling technique to the separation of bupivacaine enantiomers by capillary electrophoresis using human serum albumin (HSA) as chiral selector. In this procedure the cationic surfactant cetyltrimethylammonium bromide (CTAB) was used as a dinamic capillary coating in order to reduce the electro-osmotic flow and detect both bupivacaine enantiomers out of the chiral selector plug. Several experimental conditions such as CTAB concentration, pH, HSA concentration and plug length, background electrolyte concentration, temperature and voltage were studied. Under the selected conditions it is possible to detect the separated enantiomers out of the HSA plug in less than 4 min using 50 mM Tris pH 8 as background electrolyte with 50 microM CTAB, at 30 degrees C and using a separation voltage of 25 kV. The proposed methodology was then validated for analytical purposes and applied to the analysis of pharmaceutical preparations commercially available. The results obtained with the proposed methodology were in good agreement with those declared by the manufacturers. The simplicity, sample throughput, accuracy, reproducibility and low cost of the proposed method make it suitable for the control of the enantiomeric composition of bupivacaine in pharmaceuticals.  相似文献   

15.
Summary The applicability of capillary electrophoresis/frontal analysis (CE/FA) for determining the binding constants of the drugs propranolol (PRO) and verapamil (VER) to human serum albumin (HSA) was investigated. After direct hydrodynamic injection of a drug-HAS mixture solution into a coated capillary (32 cm × 50 μm i.d.), the basic drug was eluted as a zonal peak with a plateau region under condition of phosphate buffer (pH 7.4; ionic strength 0.17) at 12 kV positive running voltage. The unbound drug concentrations measured from the plateau peak heights had good correlation coefficients,r>0.999. Employing the Scatchard plot, the Klotz plot and nonlinear regression, the drug protein binding parameters, the binding constant and the number of binding sites on one protein molecule, were obtained. The binding constant obtained was compared to a reported equilibrium dialysis result and they are basically in good agreement.  相似文献   

16.
17.
Summary The interaction thermodynamics of heptacarboxylporphyrin (HCP) and protoporhyrin (PP) with human serum albumin (HSA) was studied by affinity capillary electrophoresis (ACE) over the temperature range of 25–50°C, where HCP and PP bound to HSAvia 1:1 molecular association. The binding equilibrium constants (pH 7.4, phosphate buffer) for the binding of HCP with HSA were found to decrease with an increase in temperature, whereas the binding constants of the PP/HSA system appeared to be independent of temperature changes over the range studied. The van’t Hoff relationship (25–50°C) was found to be linear for the interaction of either HCP or PP with HSA. However, the interaction thermodynamics for both of these porphyrins with HSA were found to be quite different. In particular, the interaction of HCP (a hydrophilic porphyrin) with HSA appeared to be based on an enthalpy-driven process, whereas the binding between PP (a hydrophobic porphyrin) and HSA driven by a favorable change in entropy. The ability of using ACE to evaluate the interaction thermodynamics of serum proteins (e.g., HSA) with ligands (e.g., porphyrins and related compounds) should aid in the development of new and more effective photosensitizers in the photodynamic therapy of cancer.  相似文献   

18.
Raman spectrum is a powerful analytical tool for determining the chemical information of compounds. In this study, we obtained analytical results of chlorophenols(CPs) molecules including 4-chlorophenol(4-CP), 2,6-dich- lorophenol(2,6-DCP) and 2,4,6-trichlorophenol(2,4,6-TCP) on the surface of Ag dendrites by surface-enhanced Raman scattering(SERS) spectra. SEM images indicate that the SERS substrate of Ag dendrites is composed of a large number of polygonal nanocrystallites, which self-assembled into a 3D hierarchical structure. It was found that there were distinct differences for those three molecules from Raman and SERS spectra. This indicates that SERS could be a new tool of detection technique regarding trace amounts of CPs.  相似文献   

19.
本文总结了近年来基于传播型表面等离激元(Propagafingsurfaceplasmons,PSPs)参与的表面增强拉曼(Surface—enhancedRamanscattering,SERS)技术和仪器方面的研究进展.内容主要包括3部分:(1)基于PSPs激励拉曼散射的装置和技术,包括在消逝场下激发PSPs共振增强拉曼的原理与装置、与表面等离子体共振(Surfaceplasmonresonance,SPR)传感技术的联用及新型结构的长程等离激元激励拉曼技术的研究进展;(2)通过引入局域型表面等离激元(Localizedsurfaceplasmons,LSPs)进一步增强SERS,进而实现PSPs-LSPs共同增强拉曼的超灵敏检测技术,包括在消逝场激发的PSPs基础上,增加纳米粒子实现的PSPs与LSPs共同增强拉曼的原理、装置,以及用该方法进行生物体系的免疫识别检测,此外,还在微纳周期结构上实现了PSPs与LSPs共同激励拉曼;(3)基于PSPs耦合的定向SERS技术,包括在消逝场结构和周期结构上实现SERS定向耦合发射以达到高激发和高收集效率的新技术.  相似文献   

20.
Wu ZS  Zhou GZ  Jiang JH  Shen GL  Yu RQ 《Talanta》2006,70(3):533-539
It is difficult to detect glucose by surface-enhanced Raman spectroscopy (SERS) due to the small normal Raman cross-section and the weak adsorption of glucose molecules on the surface of noble metal. A simple and fast method is proposed in this paper for the detection of glucose based on SERS signal of the enzyme reaction product and the difficulties have been circumvented. Gold colloids modified by horseradish peroxidase and glucose oxidase (HRP/GOD-gold colloids) are added to the mixture of o-phenylenediamine and glucose, and the resulting solution is allowed to react at room temperature for 5 min. Azoaniline, an azo compound with strong Raman scattering, is generated and the Raman scattering of this reaction product is enhanced when adsorbed on gold colloids. The intensity of the SERS spectrum is used for assessment of glucose content. The dynamic signal range provided by this analytical system is 0.50-32 mM, which covers the normal clinical range for glucose in blood from 3.5 to 6.1 mM. The detection limit is about 0.46 mM. The interference effect of several proteins on glucose detection is also investigated and has shown to have no effect on the measurement of glucose by the described technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号