首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP/6-311G* level and then subjected to further optimization at the B3LYP/6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD/6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP/6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP/6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP/6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide qualitatively correct results in the solution.  相似文献   

2.
An extensive exploration of the conformational space has been carried out to characterize all possible gas phase structures of leucine. A total of 324 unique trial structures for canonical leucine were generated by considering all possible combinations of single bond rotamers. All trial structures were optimized at the B3LYP/6-311G* level of the DFT method. A total of 77 unique and stationary canonical conformers were found. Further, 15 most stable conformers were reoptimized at B3LYP/6-311++G** level and their respective relative energies, vertical ionization energies, hydrogen bonding patterns, rotational constants and dipole moments were calculated. A single point energy calculations for leucine conformers have also been done at both B3LYP/6-311++G(2df, p) and MP2/6-311++G(2df, p) levels. The good agreement between our estimates of rotational constants for two most stable conformers and available experimental measurements supports the reliability of the B3LYP/6-311++G** level of theory for describing the conformational behavior of leucine molecule. The proton affinity and gas phase basicity were also determined. Using the statistical approach, conformational distributions at various temperatures have also been performed and analyzed. Vibrational spectra were also calculated. It is also observed that zwitterions of leucine are not stable in gas phase.  相似文献   

3.
A full structural search of the canonical, zwitterionic, protonated and deprotonated lysine conformers in gas phase is presented. A total of 17,496 canonical, 972 zwitterionic, 11,664 protonated and 1458 trial deprotonated structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were initially optimized at the AM1 level, and the resulting structures were determined at the B3LYP/6-311G* level. A total of 927 canonical, 730 protonated and 193 deprotonated conformers were found, but there were no stable zwitterionic structures in the gas phase. The most stable conformers of the canonical, protonated and deprotonated lysine were further optimized at the B3LYP/6-311++G** level. The energies of the most stable structures were determined at the MP2/6-311G(2df,p) level and the vibrational frequencies were calculated at the B3LYP/6-311++G** level. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, vertical ionization energies, enthalpies, Gibbs free energies and conformational distributions of gaseous lysine were presented. Numerous new structures are found and the lowest-energy lysine conformer is more stable than the existing one by 1.1 kcal/mol. Hydrogen bonds are classified and may cause significant red-shifts to the associated vibrational frequencies. The calculated proton affinity/dissociation energy and gas-phase basicity/acidity are in good agreement with the experiments. Calculations are also presented for the canonical lysine–H2O and zwitterionic lysine–H2O clusters. Interaction between lysine and H2O significantly affects the relative conformational stabilities. Only one water molecule is sufficient to produce the stable zwitterionic structures in gas phase. The lowest-energy structure is found to be zwitterions when applying the conductor-like polarized continuum solvent model (CPCM) to the lysine–H2O complexes.  相似文献   

4.
Microsolvation and combined microsolvation-continuum approaches are employed to investigate the structures and energies of canonical and zwitterionic histidine conformers. The effect of hydration on the relative conformational stability is examined. The strategy of exploring singly and doubly hydrated structures and the possible microsolvation patterns are described. We find that bonding water molecule may significantly change the relative conformational stabilities. In gas phase, the singly and doubly hydrated canonical forms are more stable than their zwitterionic counterparts. In solution, the continuum solvent model shows that bare zwitterionic form is more stable than bare canonical form by 1.1 kcal/mol. This energy separation is increased to 2.2 and 3.4 kcal/mol with inclusion of one and two explicit water molecules, respectively. We have also observed that the doubly hydrated structures obtained by combining two water molecules simultaneously to the solute molecule are preferred over the stepwise hydration. Hydrogen bond energies for the most stable hydrated histidine tautomers are determined by the atoms in molecules theory. The infrared (IR) spectra for the most stable singly and doubly hydrated structures of both histidine tautomers in gas phase are characterized. The stretching frequencies for NH of imidazole ring and OH of COOH are red shifted due to the hydrations. The IR spectra for the most stable zwitterionic tautomers in solution are also presented and discussed in connection with the comparison to the experiments. The pKa values obtained for the ring protonated zwitterions with two explicit water molecules appear to be in good agreement with the experiments.  相似文献   

5.
采用理论计算方法B3LYP, 在6-31++G**基组水平研究使甘氨酸质子化所需的最少水分子数目, 然后讨论水合两性离子复合体的结构和性能, 进而计算了二水合甘氨酸中性分子复合体(2W-GN)到二水合甘氨酸两性离子复合体(2W-GZ)的过渡态, 得到如下结论: (1)两个水分子可以使甘氨酸质子化, 能够形成稳定的二水合两性离子复合体. (2)甘氨酸与水分子之间通过氢键相互作用, 结合能较大, 复合体稳定; 在二水合甘氨酸复合体中, 水合甘氨酸中性分子比水合甘氨酸两性离子稳定. (3)由2W-GN到2W-GZ过程的反应活化能和氢键键能相近.  相似文献   

6.
B3LYP/6-31++G** and MP2/6-31++G**//B3LYP/6-31++G** calculations are reported for the structures of neutral alanine–(H2O)n and zwitterionic alanine–(H2O)n clusters where n = 2–10. Optimized geometries and energies were obtained. In general, with an increasing number of water molecules, the hydrated zwitterionic form becomes more thermodynamically stable. In the presence of six or seven water molecules, the energetics indicate that the two forms may coexist. Eight water molecules are sufficient to computationally guarantee the reported experimental observation of zwitterionic dominance in solution.  相似文献   

7.
The most stable charge-solvated (CS) and zwitterionic (ZW) structures of sodiated and cesiated leucine and isoleucine were studied by density functional theory methods. According to the Boltzmann distribution in gas phase, both forms of LeuNa+ and IleNa+ exist, but in LeuCs+ and IleCs+, the ZW forms are dominant. Results for the sodiated compounds are consistent with the relationship found between decrease in relative stability of CS versus ZW form and aliphatic amino acid side chain length. The observed degeneracy in energy for IleNa+ conformers is at odds with kinetic method results. Additional calculations showed that kinetic method structural determinations for IleNa+ do not reflect relative order of populations in the lowest energy conformers. Since complexation of cationized amino acids into ion-bound dimers disfavors ZW structure by approximately 8 kJ mol(-1), it is suggested that for energy close conformers of sodium-cationized amino acids, the kinetic method may not be reliable for structural determinations.  相似文献   

8.
Based on the B3LYP and MP2/aug-cc-pVDZ calculations, 51 cysteine conformers were found to be stable in the gas phase. The calculations were repeated for the most stable eight structures by using the aug-cc-pVTZ basis set. To estimate the influence of water on the cysteine conformation, the IEF-PCM/B3LYP/aug-cc-pVDZ calculations were carried out and showed 44 neutral and 12 zwitterion conformers to be stable in the water solution. The most stable cysteine structure in water appeared to be the zwitterionic conformer quite similar to the molecule observed in the crystal state.  相似文献   

9.
Zwitterionic stabilization and metal‐free organocatalysis are two emerging topics. In this work, the numbers of DMSO molecules required to render zwitterionic proline geometrically stable, energetically preferential, and conformationally predominant have been determined, as one, three, and three, respectively. Conformations are analyzed for proline conformers interacted with one, two, and three DMSO molecules, and three DMSO molecules are enough to fill up the first shell of proline. Relative stabilities of two selected canonical structures are dependent on the DMSO contents, while zwitterionic stabilities improve monotonously with increase of DMSO contents. DMSO causes a conformational diversity and good zwitterionic stabilization effects, which result from the synergetic effects of two types of H‐bonding interactions. With increase of DMSO contents, type‐2 H‐bonding (CH as donors) contributes more to zwitterionic stabilization. At any DMSO content, zwitterionic proline is facile to form because of low activation energies, and this study helps to understand proline‐catalyzed processes. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Extensive ab initio calculations were employed to characterize stable conformers of gaseous arginine, both the canonical and zwitterionic tautomers. Step-by-step geometry optimizations of possible single-bond rotamers at the B3LYP/6-31G(d), B3LYP/6-31++G(d,p), and MP2/6-31++G(d,p) levels yield numerous structures that are more stable than any known ones. The final electronic energies of the conformers were determined at the CCSD/6-31++G(d,p) level. The lowest energies of the canonical and zwitterionic structures are lower than the existing values by 2.0 and 2.3 kcal/mol, respectively. The relative energies, rotational constants, dipole moments, and harmonic frequencies of the stable conformers remain for future experimental verification. The conformational distributions at various temperatures, estimated according to thermodynamic principles, consist almost exclusively of the newly found structures. One striking feature is the occurrence of blue-shifting hydrogen bonds in all six of the most stable conformers. A unique feature of important conformations is the coexistence of dihydrogen and blue- and red-shifting hydrogen bonds. In addition to the hydrogen bonds, the stereoelectronic effects were also found to be important stabilization factors. The calculated and measured proton affinities agree within the theoretical and experimental uncertainties, affirming the high quality of our conformational search. The theoretical gas-phase basicity of 245.9 kcal/mol is also in good agreement with the experimental value of 240.6 kcal/mol. The extensive searches establish firmly that gaseous arginine exists primarily in the canonical and not the zwitterionic form.  相似文献   

11.
An extensive exploration of Met-enkephalin in its zwitterionic form has been carried out, in order to characterize the different low-energy conformational domains accessible to this pentapeptide. The study builds on previous studies carried out in our lab for the neutral molecule, which provided the initial geometries from which the conformational space of the charged molecule could be scanned. The initial conformations were subjected to a series of high- and lowtemperature molecular dynamics simulations. Snapshots along each trajectory were taken, minimized, and used as starting points in further MD trajectories until no lower-energy conformers could be characterized. The CHARMm force field was used throughout the study for this purpose. The same search strategy was used in these studies simulating two different environmental conditions, a distance-dependent dielectric ? = r and a high constant dielectric ? = 80. In the low dielectric environment, the formation of the salt bridge dominates the structure. In the high dielectric environment, the screening of the electrostatic interactions results in weaker intramolecular interactions. In both cases, the Gly2–Gly3 β-turn-type structures are preferred over the Gly3–Phe4 turns, in marked contrast to what is found for the neutral molecule. The lowest-energy structures from both environmental conditions were reoptimized in the presence of a cluster of explicit water molecules. Reoptimization of the structures considering explicit water structures did not result in significant conformational changes for the structures characterized with the ε = r or ε = 80 environments.  相似文献   

12.
We present a systematic study of 1:1 glycine-water complexes involving all possible glycine conformers. The complex geometries are fully optimized for the first time both in the gas phase and in solution using three DFT methods (B3LYP, PBE1PBE, X3LYP) and the MP2 method. We calculate the G3 energies and use them as the reference data to gauge hydrogen bond strength in the gas phase. The solvent effects are treated via the integral equation formalism-polarizable continuum model (IEF-PCM). Altogether, we locate fifty-two unique nonionized (N) structures and six zwitterionic (Z) structures in the gas phase, and fifty-five N structures and thirteen Z structures in solution. Both correlation and solvation are shown to be important in geometry determination. We found that in the gas phase, a water molecule binds more strongly to the carboxylic acid group of glycine than to its amine group, whereas in solution phase the reverse is true. The most stable Z structure is isoenergetic with the most stable N structure.  相似文献   

13.
The structures of lithiated lysine, ornithine, and related molecules, both with and without a water molecule, are investigated using both density functional theory and blackbody infrared radiative dissociation experiments. The lowest-energy structure of lithiated lysine without a water molecule is nonzwitterionic; the metal ion interacts with both nitrogen atoms and the carbonyl oxygen. Structures in which lysine is zwitterionic are higher in energy by more than 29 kJ/mol. In contrast, the singly hydrated clusters with the zwitterionic and nonzwitterionic forms of lysine are more similar in energy, with the nonzwitterionic form more stable by only approximately 7 kJ/mol. Thus, a single water molecule can substantially stabilize the zwitterionic form of an amino acid. Analogous molecules that have methyl groups attached to either the N-terminus (NMeLys) or the side-chain amine (Lys(Me)) have proton affinities greater than that of lysine. In the lithiated clusters with a water molecule attached, the zwitterionic forms of NMeLys and Lys(Me) are calculated to be approximately 4 and approximately 11 kJ/mol more stable than the nonzwitterionic forms, respectively. Calculations of the potential-energy pathway for interconversion between the different forms of lysine in the lithiated complex indicate multiple stable intermediates with an overall barrier height of approximately 83 kJ/mol between the lowest-energy nonzwitterionic form and the most accessible zwitterionic form. Experimentally determined binding energies of water are similar for all these complexes and range from 57 to 64 kJ/mol. These results suggest that loss of a water molecule from the lysine complexes is both energetically and entropically favored compared to interconversion between the nonzwitterionic and zwitterionic structures. Comparisons to calculated binding energies of water to the various structures show that the experimental results are most consistent with the nonzwitterionic forms.  相似文献   

14.
The conformations and relative stabilities of folded and extended 3-fluoro-γ-aminobutyric acid (3F-GABA) conformers were studied using explicit solvation models. Geometry optimisations in the gas phase with one or two explicit water molecules favour folded and neutral structures containing intramolecular NH···O-C hydrogen bonds. With three or five explicit water molecules zwitterionic minima are obtained, with folded structures being preferred over extended conformers. The stability of folded versus extended zwitterionic conformers increases on going from a PCM continuum solvation model to the microsolvated complexes, though extended structures become less disfavoured with the inclusion of more water molecules. Full explicit solvation was studied with a hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme and molecular dynamics simulations, including more than 6000 TIP3P water molecules. According to free energies obtained from thermodynamic integration at the PM3/MM level and corrected for B3LYP/MM total energies, the fully extended conformer is more stable than folded ones by about -4.5 kJ mol(-1). B3LYP-computed (3)J(F,H) NMR spin-spin coupling constants, averaged over PM3/MM-MD trajectories, agree best with experiment for this fully extended form, in accordance with the original NMR analysis. The seeming discrepancy between static PCM calculations and experiment noted previously is now resolved. That the inexpensive semiempirical PM3 method performs so well for this archetypical zwitterion is encouraging for further QM/MM studies of biomolecular systems.  相似文献   

15.
16.
The zwitterionic forms of the two simplest alpha-amino acids, glycine and l-alanine, in aqueous solution and the solid state have been modeled by DFT calculations. Calculations of the structures in the solid state, using PW91 or PBE functionals, are in good agreement with the reported crystal structures, and the vibrational spectra computed at the optimized geometries provide a good fit to the observed IR and Raman spectra in the solid state. DFT calculations of the structures and vibrational spectra of the zwitterions in aqueous solution at the B3-LYP/cc-pVDZ level were found to require both explicit and implicit solvation models. Explicit solvation was modeled by inclusion of five hydrogen-bonded water molecules attached to each of the five possible hydrogen-bonding sites in the zwitterion and the integration equation formalism polarizable continuum model (IEF-PCM) was employed, providing a satisfactory fit to observed IR and Raman spectra. Band assignments are reported in terms of potential-energy distributions, which differ in some respects to those previously reported for glycine and l-alanine.  相似文献   

17.
Ab initio methods were utilized in a gas-phase systematic conformational search of bilirubin conformers. The whole molecule was divided into four fragments. Most stable conformers of them were employed to build 196 conformers of the complete bilirubin molecule. Initial geometries were optimized using HF/3-21G level of theory and the minimum energy conformers were then reoptimized at B3LYP/6-31G(d) level. Ridge-tile conformer was the most stable one, in perfect agreement with X-ray data. We found that while tetrapyrrole backbone shows some flexibility, propionic acid side chains have a greater influence in bilirubin conformation because they can interact through different hydrogen bond patterns with the backbone and between them.  相似文献   

18.
The biological relevance of amino acids is well known. They can be used as zwitterionic, cationic or anionic forms according to the pH of the medium where they are. Thus, our aim herein was to study the conformational preference of the polar amino acid l-threonine [C4H9NO3, (2S,3R)-2-amino-3-hydroxybutyric acid] under different pH conditions. A conformational study in an aqueous solution of the dissociation equilibrium of the amino acid l-threonine was carried out for this purpose. We recorded, at room temperature, the Mid-IR, Far-IR, Raman and VCD spectra of l-threonine from the aqueous solutions at pH values 5.70 (zwitterionic species), 1.00 (protonated species) and 13.00 (deprotonated species). The number of conformers found with the conformational search was 9 zwitterions, 27 anions and 52 cations. Both the study of the conformational landscape and the theoretical analysis of the vibrational features were accomplished by using DFT and ab initio calculations, that is, B3LYP/6-311++G(d,p) level of theory for all the conformers obtained from the conformational search, M062X/6-311++G(d,p) and MP2/6-311++G(d,p) levels of theory for the most stable conformers. The presence of water was included with the IEF-PCM implicit hydration model. With regard to the zwitterion, the importance of the analysis of the low frequency region (700–30 cm–1) in the Far-IR spectra should be noted, because it provides relevant information that can be used to determine the presence of the most stable structures.  相似文献   

19.
The molecular structure and intramolecular hydrogen bond energy of 18 conformers of 3‐imino‐propenyl‐amine were investigated at MP2 and B3LYP levels of theory using the standard 6‐311++G** basis set. The atom in molecules or AIM theory of Bader, which is based on the topological properties of the electron density (ρ), was used additionally and the natural bond orbital (NBO) analysis was also carried out. Furthermore calculations for all possible conformations of 3‐imino‐propenyl‐amin in water solution were also carried out at B3LYP/6‐311++G** and MP2/6‐311++G** levels of theory. The calculated geometrical parameters and conformational analyses in gas phase and water solution show that the imine–amine conformers of this compound are more stable than the other conformers. B3LYP method predicts the IMA‐1 as global minimum. This stability is mainly due to the formation of a strong N? H···N intramolecular hydrogen bond, which is assisted by π‐electrons resonance, and this π‐electrons are established by NH2 functional group. Hydrogen bond energies for all conformers of 3‐imino‐propenyl‐amine were obtained from the related rotamers methods. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

20.
We have theoretically investigated how the low-energy conformers of the neutral and the zwitterionic forms of glycine as well as methylcarbamic acid are stabilized by the presence water. The MP2/6-311++G(d,p) method was utilized to conduct calculations on glycine and methylcarbamic acid in both isolated clusters and in clusters embedded in the conductor-like polarizable continuum model (C-PCM), where the clusters explicitly contain between one and ten water molecules. The neutral forms of glycine and methylcarbamic acid were found to have similar hydration energies, whereas the neutral methylcarbamic acid was determined to be approximately 32 kJ mol(-1) more stable than the neutral glycine in the isolated clusters and 30 kJ mol(-1) more stable in the C-PCM embedded clusters. Both the number and strength of the hydrogen bonding interactions between water and the zwitterions drive the stability. This lowers the relative energy of the glycine zwitterion from 50 kJ mol(-1) above neutral glycine, when there are two water molecules in the clusters to 11 kJ mol(-1) below for the clusters containing ten water molecules. For the methylcarbamic acid clusters with two water molecules, the zwitterion is 51 kJ mol(-1) higher in energy than the neutral form, but it remains 13 kJ mol(-1) above the neutral methylcarbamic acid in the clusters containing ten water molecules. When the bulk water environment is simulated by the C-PCM calculations, we find both the methylcarbamic acid and glycine zwitterionic forms have similar energies at 20 kJ mol(-1) above the neutral methylcarbamic acid energy and 10 kJ mol(-1) lower than the neutral glycine energy. Although neither methylcarbamic acid nor glycine have been detected in the interstellar medium yet, our findings indicate that methylcarbamic acid is the more stable product from methylamine and carbon dioxide reactions in a water ice. This suggests that methylcarbamic acid likely plays a role in the intermediate steps if glycine is formed in the interstellar medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号