首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A semiregular tree is a tree where all non-pendant vertices have the same degree. Among all semiregular trees with fixed order and degree, a graph with minimal (adjacency/Laplacian) spectral radius is a caterpillar. Counter examples show that the result cannot be generalized to the class of trees with a given (non-constant) degree sequence.  相似文献   

2.
An r-edge-coloring of a graph G is a surjective assignment of r colors to the edges of G. A heterochromatic tree is an edge-colored tree in which any two edges have different colors. The heterochromatic tree partition number of an r-edge-colored graph G, denoted by tr(G), is the minimum positive integer p such that whenever the edges of the graph G are colored with r colors, the vertices of G can be covered by at most p vertex-disjoint heterochromatic trees. In this paper we give an explicit formula for the heterochromatic tree partition number of an r-edge-colored complete bipartite graph Km,n.  相似文献   

3.
The energy of a graph is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix. Let T(n,γ) be the set of trees of order n and with domination number γ. In this paper, we characterize the tree from T(n,γ) with the minimal energy, and determine the tree from T(n,γ) where n=kγ with maximal energy for .  相似文献   

4.
Let G be a connected graph of order 3 or more and let be a coloring of the edges of G (where adjacent edges may be colored the same). For each vertex v of G, the color code of v is the k-tuple c(v)=(a1,a2,…,ak), where ai is the number of edges incident with v that are colored i (1?i?k). The coloring c is called detectable if distinct vertices have distinct color codes; while the detection number det(G) of G is the minimum positive integer k for which G has a detectable k-coloring. For each integer n?3, let DT(n) be the maximum detection number among all trees of order n and dT(n) the minimum detection number among all trees of order n. The numbers DT(n) and dT(n) are determined for all integers n?3. Furthermore, it is shown that for integers k?2 and n?3, there exists a tree T of order n having det(T)=k if and only if dT(n)?k?DT(n).  相似文献   

5.
A pebbling move on a graph consists of taking two pebbles off of one vertex and placing one pebble on an adjacent vertex. In the traditional pebbling problem we try to reach a specified vertex of the graph by a sequence of pebbling moves. In this paper we investigate the case when every vertex of the graph must end up with at least one pebble after a series of pebbling moves. The cover pebbling number of a graph is the minimum number of pebbles such that however the pebbles are initially placed on the vertices of the graph we can eventually put a pebble on every vertex simultaneously. We find the cover pebbling numbers of trees and some other graphs. We also consider the more general problem where (possibly different) given numbers of pebbles are required for the vertices.  相似文献   

6.
7.
Füredi  Z.  Komjáth  P. 《Combinatorica》1997,17(2):163-171
IfG is a finite tree with a unique vertex of largest, and 4 degree which is adjacent to a leaf then there is no universal countableG-free graph.Research partially supported by the Hungarian Science Research Grant OTKA No. 2117 and by the European Communities (Cooperation in Science and Technology with Central and Eastern European Countries) contract number ERBCIPACT930113.  相似文献   

8.
Thescore vector of a labeled digraph is the vector of out-degrees of its vertices. LetG be a finite labeled undirected graph without loops, and let σ(G) be the set of distinct score vectors arising from all possible orientations ofG. Let ϕ(G) be the set of subgraphs ofG which are forests of labeled trees. We display a bijection between σ(G) and ϕ(G). Supported in part by ONR Contract N00014-76-C-0366.  相似文献   

9.
In this paper, we study the spectral properties of a family of trees characterized by two main features: they are spanning subgraphs of the hypercube, and their vertices bear a high degree of (connectedness) hierarchy. Such structures are here called binary hypertrees and they can be recursively defined as the so-called hierarchical product of several complete graphs on two vertices.  相似文献   

10.
《Quaestiones Mathematicae》2013,36(2):159-164
Abstract

The Steiner distance d(S) of a set S of vertices in a connected graph G is the minimum size of a connected subgraph of G that contains S. The Steiner number s(G) of a connected graph G of order p is the smallest positive integer m for which there exists a set S of m vertices of G such that d(S) = p—1. A smallest set S of vertices of a connected graph G of order p for which d(S) = p—1 is called a Steiner spanning set of G. It is shown that every connected graph has a unique Steiner spanning set. If G is a connected graph of order p and k is an integer with 0 ≤ k ≤ p—1, then the kth Steiner number sk(G) of G is the smallest positive integer m for which there exists a set S of m vertices of G such that d(S) = k. The sequence so(G),s1 (G),…,8p-1(G) is called the Steiner sequence of G. Steiner sequences for trees are characterized.  相似文献   

11.
Expanding graphs contain all small trees   总被引:1,自引:0,他引:1  
The assertion of the title is formulated and proved. The result is then used to construct graphs with a linear number of edges that, even after the deletion of almost all of their edges or almost all of their vertices, continue to contain all small trees.  相似文献   

12.
It is easily shown that every path has a graceful labelling, however, in this paper we show that given almost any path P with n vertices then for every vertex vV(P) and for every integer i∈{0,…,n-1} there is a graceful labelling of P such that v has label i. We show precisely when these labellings can also be α-labellings. We then extend this result to strong edge-magic labellings. In obtaining these results we make heavy use of π-representations of α-labellings and review some relevant results of Kotzig and Rosa.  相似文献   

13.
The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we provide structural and behavioral details of graphs with maximum Laplacian spectral radius among all bipartite connected graphs of given order and size. Using these results, we provide a unified approach to determine the graphs with maximum Laplacian spectral radii among all trees, and all bipartite unicyclic, bicyclic, tricyclic and quasi-tree graphs, respectively.  相似文献   

14.
Let Cn,g be the lollipop graph obtained by appending a g-cycle Cg to a pendant vertex of a path on n-g vertices. In 2002, Fallat, Kirkland and Pati proved that for and g?4, α(Cn,g)>α(Cn,g-1). In this paper, we prove that for g?4, α(Cn,g)>α(Cn,g-1) for all n, where α(Cn,g) is the algebraic connectivity of Cn,g.  相似文献   

15.
Given an n-vertex graph G=(V,E), the Laplacian spectrum of G is the set of eigenvalues of the Laplacian matrix L=D-A, where D and A denote the diagonal matrix of vertex-degrees and the adjacency matrix of G, respectively. In this paper, we study the Laplacian spectrum of trees. More precisely, we find a new upper bound on the sum of the k largest Laplacian eigenvalues of every n-vertex tree, where k∈{1,…,n}. This result is used to establish that the n-vertex star has the highest Laplacian energy over all n-vertex trees, which answers affirmatively to a question raised by Radenkovi? and Gutman [10].  相似文献   

16.
A graph is called integral if the spectrum of its adjacency matrix has only integral eigenvalues. An eigenvalue of a graph is called main eigenvalue if it has an eigenvector such that the sum of whose entries is not equal to zero. In this paper, we show that there are exactly 25 connected integral graphs with exactly two main eigenvalues and index 3.  相似文献   

17.
For a graphG let ℒ(G)=Σ{1/k contains a cycle of lengthk}. Erdős and Hajnal [1] introduced the real functionf(α)=inf {ℒ (G)|E(G)|/|V(G)|≧α} and suggested to study its properties. Obviouslyf(1)=0. We provef (k+1/k)≧(300k logk)−1 for all sufficiently largek, showing that sparse graphs of large girth must contain many cycles of different lengths.  相似文献   

18.
Can a complete graph on an even number n (> 4) of vertices be properly edge-colored with n − 1 colors in such a way that the edges can be partitioned into edge-disjoint colorful isomorphic spanning trees? A spanning treee is colorful if all n − 1 colors occur among its edges. It is proved that this is possible to accomplish whenever n is a power of two.Received July 24, 2001  相似文献   

19.
We consider the only remaining unsolved case n0 (mod k) for the largest kth eigenvalue λk.of trees with n vertices. In this paper, the conjecture for this problem in [Shao Jia-yu, On the largest kth eignevalues of trees, Linear Algebra Appl. 221 (1995) 131] is proved and (from this) the complete solution to this problem, the best upper bound and the extremal trees of λk, is given in general cases above.  相似文献   

20.
A generalization of the Prüfer coding of trees is given providing a natural correspondence between the set of codes of spanning trees of a graph and the set of codes of spanning trees of theextension of the graph. This correspondence prompts us to introduce and to investigate a notion ofthe spanning tree volume of a graph and provides a simple relation between the volumes of a graph and its extension (and in particular a simple relation between the spanning tree numbers of a graph and its uniform extension). These results can be used to obtain simple purely combinatorial proofs of many previous results obtained by the Matrix-tree theorem on the number of spanning trees of a graph. The results also make it possible to construct graphs with the maximal number of spanning trees in some classes of graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号