首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
我们首先提出了一个带ARMA(1,1)条件异方差相关的随机波动模型,它是基本的随机波动模型的一个自然的推广.进一步,对于这一新模型,我们给出了一个马尔可夫链蒙特卡罗(M CM C)算法.最后,利用该模型的模拟数据,展示了M CM C算法在这种模型中的应用.  相似文献   

2.
针对具有Markov区制转移的、波动均值状态相依的随机波动模型,基于贝叶斯分析,我们推导并给出了对区制转移随机波动模型的MCMC估计方法,其中对参数估计采用Gibbs抽样方法,对潜在对数波动和区制的状态变量估计采用向前滤波、向后抽样的多步移动方法;利用该模型,对我国上证综指周收益率进行了实证分析,发现对沪市波动性有较好的描述,捕捉了波动的时变性、聚类性和非线性特征,同时刻画了沪市的高低波动状态转换过程。  相似文献   

3.
现有随机波动(SV)模型依赖于参数条件分布形式假设,无法充分描述金融资产收益的偏态厚尾等典型特点,而非参数分布能够更全面地刻画这些特性。本文将SV模型和非参数分布相结合,构建一类半参数SV模型;同时在贝叶斯框架内,发展有效MCMC抽样解决模型的参数估计难问题,并利用对数预测尾部得分(LPTS)法分析模型的极端风险预测能力;最后以我国美元/人民币汇率市场为例,对半参数SV模型在收益特性刻画以及极端风险预测方面的实际效果进行了检验。  相似文献   

4.
在经济领域中,时间序列具有序列相关和长记忆等特征,用考虑了时间序列短记忆性和长记忆的ARFIMA来模型分析研究经济时间序列有利于提高拟合及预测的精度。近几十年来对ARFIMA模型参数估计和分数差分算子阶数d的研究越来越多,该模型的应用也越来越广泛。基于贝叶斯方法在参数估计中的优越性,本文结合众多应用此方法的文献所得到的后验分布特点,提出了合理的先验分布,考虑到计算难度,采用MCMC方法对模型的参数进行估计,最后应用我国过去几十年的GDP数据进行实证分析,得到了ARFIMA模型参数的后验分布图、均值、方差及95%的置信区间。  相似文献   

5.
结构方程模型在社会学、教育学、医学、市场营销学和行为学中有很广泛的应用。在这些领域中,缺失数据比较常见,很多学者提出了带有缺失数据的结构方程模型,并对此模型进行过很多研究。在这一类模型的应用中,模型选择非常重要,本文将一个基于贝叶斯准则的统计量,称为L_v测度,应用到此类模型中进行模型选择。最后,本文通过一个模拟研究及实例分析来说明L_v测度的有效性及应用,并在实例分析中给出了根据贝叶斯因子进行模型选择的结果,以此来进一步说明该测度的有效性。  相似文献   

6.
GARCH模型是研究金融资产收益的重要模型,然而现有参数GARCH模型依然不能有效刻画金融资产收益偏态厚尾特性且存在模型设定风险。本文在非参数分布和GARCH模型基础上,建立半参数GARCH模型以提高模型的有效性;同时在贝叶斯框架内发展有效MCMC抽样解决模型的参数估计难问题,并利用DIC4研究模型比较问题;最后通过模拟研究和实证研究考察MCMC抽样的有效性,检验半参数GARCH模型在刻画金融资产收益特性和风险价值预测方面的实际效果。  相似文献   

7.
应用我国金融市场数据估计信用风险强度模型参数时,常遇到由小样本而导致的偏差问题,对此本文提出了两阶段MCMC参数估计方法:第一阶段用Lee和Mykland的跳辨识方法估计跳跃项参数;第二阶段用MC-MC方法估计扩散和漂移项参数。误差分析的结果表明两阶段MCMC方法小样本下信用风险模型参数估计的效果要明显好于单纯的MCMC方法。作为应用,采用我国第一支个人住房抵押贷款支持证券"建元2005-1"的违约和提前还款数据,估计了信用风险强度模型的参数。  相似文献   

8.
基于MCMC模拟的贝叶斯厚尾金融随机波动模型分析   总被引:5,自引:0,他引:5  
针对现有金融时间序列模型建模方法难以刻画模型参数的渐变性问题,利用贝叶斯分析方法构建贝叶斯厚尾SV模型。首先对反映波动性特征的厚尾金融随机波动模型(SV-T)进行贝叶斯分析,构造了基于Gibbs抽样的MCMC数值计算过程进行仿真分析,并利用DIC准则对SV-N模型和SV-T模型进行优劣比较。研究结果表明:在模拟我国股市的波动性方面,SV-T模型比SV-N模型更优,更能反应我国股市的尖峰厚尾的特性,并且证明了我国股市具有很强的波动持续性。  相似文献   

9.
在需求和提前期均是随机的库存系统中,提前期需求的分布是由提前期分布与需求分布复合而成的,这个复合分布的计算通常是困难的。本文采用基于Gibbs抽样的马尔科夫链蒙特卡洛(MCMC,Markov chain Monte Carlo)方法,抽取条件分布样本作为提前期需求分布的样本,通过样本来计算提前期需求分布密度、服务水平和损失函数。这种方法避免了直接求解复杂积分计算上的困难,也克服了近似分布拟合偏差过大的问题,有效地解决了随机需求与随机提前期的复杂库存系统中提前期需求确定问题。理论与数值分析结果表明:与现有方法相比较,基于MCMC的方法具有计算简便、拟合精度高、通用性好等特点。  相似文献   

10.
为了准确地量化资产之间的时变相依结构和预测组合风险,本文考虑到投资者对资产风险偏好的差异,假设资产收益率序列的新息服从标准t分布,提出时变Copula-GARCH-M-t模型,推导了模型参数的两步MCMC估计方法,还得到了组合风险(VaR和CVaR)的一步预测方法。最后选取上证综合指数和标准普尔500指数,验证了所提模型及方法的可行性和优越性,同时该模型较为准确地量化了两指数在次贷危机后的时变相依结构特征。  相似文献   

11.
Abstract

This article introduces a general method for Bayesian computing in richly parameterized models, structured Markov chain Monte Carlo (SMCMC), that is based on a blocked hybrid of the Gibbs sampling and Metropolis—Hastings algorithms. SMCMC speeds algorithm convergence by using the structure that is present in the problem to suggest an appropriate Metropolis—Hastings candidate distribution. Although the approach is easiest to describe for hierarchical normal linear models, we show that its extension to both nonnormal and nonlinear cases is straightforward. After describing the method in detail we compare its performance (in terms of run time and autocorrelation in the samples) to other existing methods, including the single-site updating Gibbs sampler available in the popular BUGS software package. Our results suggest significant improvements in convergence for many problems using SMCMC, as well as broad applicability of the method, including previously intractable hierarchical nonlinear model settings.  相似文献   

12.
The problem of clustering a group of observations according to some objective function (e.g., K-means clustering, variable selection) or a density (e.g., posterior from a Dirichlet process mixture model prior) can be cast in the framework of Monte Carlo sampling for cluster indicators. We propose a new method called the evolutionary Monte Carlo clustering (EMCC) algorithm, in which three new “crossover moves,” based on swapping and reshuffling sub cluster intersections, are proposed. We apply the EMCC algorithm to several clustering problems including Bernoulli clustering, biological sequence motif clustering, BIC based variable selection, and mixture of normals clustering. We compare EMCC's performance both as a sampler and as a stochastic optimizer with Gibbs sampling, “split-merge” Metropolis–Hastings algorithms, K-means clustering, and the MCLUST algorithm.  相似文献   

13.
项目反应理论作为一种现代的教育和心理测量方法,凭借其强大的优势和先进性,在实际测量中应用越来越广泛.能否有效地估计模型中的参数是项目反应模型得以应用的前提.本文基于数据扩充技术给出了一种适用于三参数正态双卵模型的Gibbs抽样算法,有效的实现三参数正态双卵模型的贝叶斯分析.最后,通过计算机模拟研究和实例分析对该算法的有效性进行了验证.  相似文献   

14.
基于MCMC稳态模拟的指数回归模型及其应用   总被引:1,自引:0,他引:1  
讨论了加速失效模型族中最简单而又十分重要的指数回归模型,利用贝叶斯方法提高了该模型的有效性。为了较好的解决高维数值积分在实际应用中的难题,提出了对寿命服从指数分布的产品,运用基于Gibbs抽样的马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法动态模拟出参数后验分布的马尔科夫链,在回归参数的先验分布为多元正态分布时,给出随机截尾条件下,回归参数在指数回归模型中的贝叶斯估计,提高了计算的精度。借助数据仿真分析说明了利用WinBUGS(Bayesian inference Using Gibbs Sampling)软件包进行建模分析的过程,证明了该模型在可靠性应用中的直观性与有效性。  相似文献   

15.
Consider the model in which the data consist of possibly censored lifetimes, and one puts a mixture of Dirichlet process priors on the common survival distribution. The exact computation of the posterior distribution of the survival function is in general impossible to obtain. This article develops and compares the performance of several simulation techniques, based on Markov chain Monte Carlo and sequential importance sampling, for approximating this posterior distribution. One scheme, whose derivation is based on sequential importance sampling, gives an exactly iid sample from the posterior for the case of right censored data. A second contribution of this article is a battery of programs that implement the various schemes discussed here. The programs and methods are illustrated on a dataset of interval-censored times arising from two treatments for breast cancer.  相似文献   

16.
Importance sampling methods can be iterated like MCMC algorithms, while being more robust against dependence and starting values. The population Monte Carlo principle consists of iterated generations of importance samples, with importance functions depending on the previously generated importance samples. The advantage over MCMC algorithms is that the scheme is unbiased at any iteration and can thus be stopped at any time, while iterations improve the performances of the importance function, thus leading to an adaptive importance sampling. We illustrate this method on a mixture example with multiscale importance functions. A second example reanalyzes the ion channel model using an importance sampling scheme based on a hidden Markov representation, and compares population Monte Carlo with a corresponding MCMC algorithm.  相似文献   

17.
The problem of selecting one model from a family of linear models to describe a normally distributed observed data vector is considered. The notion of the model of given dimension nearest to the observation vector is introduced and methods of estimating the risk associated with such a nearest model are discussed. This leads to new model selection criteria one of which, called the "partial bootstrap", seems particularly promising. The methods are illustrated by specializing to the problem of estimating the non-zero components of a parameter vector on which noisy observations are available.  相似文献   

18.
Much work has focused on developing exact tests for the analysis of discrete data using log linear or logistic regression models. A parametric model is tested for a dataset by conditioning on the value of a sufficient statistic and determining the probability of obtaining another dataset as extreme or more extreme relative to the general model, where extremeness is determined by the value of a test statistic such as the chi-square or the log-likelihood ratio. Exact determination of these probabilities can be infeasible for high dimensional problems, and asymptotic approximations to them are often inaccurate when there are small data entries and/or there are many nuisance parameters. In these cases Monte Carlo methods can be used to estimate exact probabilities by randomly generating datasets (tables) that match the sufficient statistic of the original table. However, naive Monte Carlo methods produce tables that are usually far from matching the sufficient statistic. The Markov chain Monte Carlo method used in this work (the regression/attraction approach) uses attraction to concentrate the distribution around the set of tables that match the sufficient statistic, and uses regression to take advantage of information in tables that “almost” match. It is also more general than others in that it does not require the sufficient statistic to be linear, and it can be adapted to problems involving continuous variables. The method is applied to several high dimensional settings including four-way tables with a model of no four-way interaction, and a table of continuous data based on beta distributions. It is powerful enough to deal with the difficult problem of four-way tables and flexible enough to handle continuous data with a nonlinear sufficient statistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号