首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
[reaction: see text] At 130 degrees C, in the presence of CO2 (5-200 bar), primary aliphatic amines react with dimethyl carbonate (MeOCO2Me, DMC) to yield methyl carbamates (RNHCO2Me) and N-methylation side-products (RNHMe and RNMe2). The pressure of CO2 largely influences both the reaction conversion and the selectivity toward urethanes: in general, conversion goes through a maximum (70-80%) in the midrange (40 bar) and drops at lower and higher pressures, whereas selectivity is continuously improved (from 50% up to 90%) by an increase of the pressure. This is explained by the multiple role of CO2 in (i) the acid/base equilibrium with aliphatic amines, (ii) the reactivity/solubility of RNHCO2- nucleophiles with/in DMC, and (iii) the inhibition of competitive N-methylation reaction of the substrates. Cosolvents also affect the reaction: in particular, a drop in selectivity is observed with polar protic media (i.e., MeOH), plausibly because of solvation effects (through H-bonds) of RNHCO2- moieties. The reaction shows also a good chemoselectivity: bifunctional aliphatic amines bearing either aromatic NH2 or OH substituents [XC6H4(CH2)n NH2, X = NH2, OH; n = 1, 2], undergo methoxycarbonylation reactions exclusively at aliphatic amino groups and give the corresponding methyl carbamates [XC6H4(CH2)n NHCO2Me] in 39-65% isolated yields.  相似文献   

2.
In the presence of NaY faujasite, dimethyl carbonate (MeOCO(2)Me, DMC) is a highly chemoselective methylating agent of functionalized anilines such as aminophenols (1), aminobenzyl alcohols (2), aminobenzoic acids (3), and aminobenzamides (4). The reaction proceeds with the exclusive formation of N-methylanilines without any concurrent O-methylation or N-/O-methoxy carbonylation side processes. Particularly, only mono-N-methyl derivatives [XC(6)H(4)NHMe, X = o-, m-, and p-OH; o- and p-CH(2)OH; o- and p-CO(2)H; o- and p-CONH(2)] are obtained with selectivity up to 99% and isolated yields of 74-99%. DMC, which usually promotes methylations only at T > 120 degrees C, is activated by the zeolite catalyst and it reacts with compounds 1, 2, and 4, at 90 degrees C. Aminobenzoic acids (3) require a higher reaction temperature (> or =130 degrees C).  相似文献   

3.
A solvent- and halogen-free synthesis of high purity triflate ionic liquids via direct alkylation of organic bases (amines, phosphines or heterocyclic compounds) with methyl and ethyl trifluoromethanesulfonate (methyl and ethyl triflate) has been developed. Cheap and non-toxic dimethyl and diethyl carbonate serve as source for the methyl and ethyl groups in the preparation of methyl and ethyl triflate by this invented process. The properties of ionic liquids containing the triflate anion are determined and discussed.  相似文献   

4.
In this work,the protic ionic liquid[DBUH][Im](1,8-diazabicyclo[5.4.0]-7-undeceniumimidazolide)was developed as an efficient catalyst for the transesterification of ethylene carbonate with methanol to produce dimethyl carbonate.At 70℃,up to 97%conversion of ethylene carbonate and 91%yield of dimethyl ca rbonate were obtained with 1 mol%[DBUH][Im](relative to ethylene carbonate)as catalyst in 2 h.Even at room temperature,the conversion of ethylene carbonate can reach 94%and the yield of dimethyl carbonate can approach 81%for 6 h.Catalytic mechanism investigation showed the high catalytic efficiency of this ionic liquid results from the synergistic activation effect,wherein the cation can activate ethylene carbonate and the anion can activate methanol through hydrogen bond formatio n.Although the reusability of the ionic liquid need to be further improved,high efficiency and comme rcial availability of[DBUH][Im]render it a promising catalyst for the preparation of dimethyl carbonate.  相似文献   

5.
Easily prepared DABCO-derived (1,4-diazobicyclo[2.2.2]octane) basic ionic liquids were developed for an efficient synthesis of dimethyl carbonate (DMC) via the transesterification of ethylene carbonate (EC) with methanol. 1-Butyl-4-azo-1-azoniabicyclo[2.2.2]octane hydroxide ([C4DABCO]OH) exhibited high catalytic activity and 81% DMC yield together with 90% EC conversion was obtained under mild reaction conditions. Notably, the catalyst could be recycled for four times without loss of catalytic activity. Moreover, a possible mechanism was also discussed.  相似文献   

6.
New ruthenium(II) complexes having a tetradentate ligand such as tris(2-pyridylmethyl)amine (TPA), tris[2-(5-methoxycarbonyl)pyridylmethyl]amine [5-(MeOCO)3-TPA], tris(2-quinolylmethyl)amine (TQA), or bis(2-pyridylmethyl)glycinate (BPG) have been prepared. The reaction of the ligand with [RuCl2(Me2SO)4] resulted in a mixture of trans and cis isomers of the chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes containing a TPA or a BPG, whereas a trans(Cl,N(amino)) isomer was selectively obtained for 5-(MeOCO)3-TPA and TQA. The trans and cis isomers of the [RuCl(TPA)(Me2SO)]+ complex were easily separated by fractional recrystallization. The molecular structures of trans- and cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complexes and the trans(Cl,N(amino))-[RuCl{5-(MeOCO)3-TPA}(Me2SO)]+ complex have been determined by X-ray structural analyses. The reaction of TPA with [RuCl2(PhCN)4] gave a single isomer of the chloro(benzonitrile)ruthenium(II) complex, whereas the bis(benzonitrile)ruthenium(II) complex was obtained with BPG. The cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complex is thermodynamically much less stable than the trans isomer and isomerizes in dimethyl sulfoxide at 65-100 degrees C. Oxygenation of alkanes catalyzed by these ruthenium(II) complexes has been examined. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes with TPA and its derivatives using m-chloroperbenzoic acid as a cooxidant showed high catalytic ability. Adamantane was efficiently and selectively oxidized to give 1-adamantanol up to 88%. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complex with 5-(MeOCO)3-TPA was found to be the most active catalyst among the complexes examined.  相似文献   

7.
采用原位法合成了不同类型的四羰基钴/咪唑离子液体催化剂, 并考察了其在氯乙酸甲酯羰基化反应中的催化性能. 研究了咪唑环上不同支链对催化活性的影响. 结果表明, 1-丁基-3-甲基咪唑羰基钴离子液体[Bmim][Co(Co)4]不仅催化活性高, 选择性好, 而且对空气和水有较好的稳定性能. 在pCO=2.0 MPa, 85 ℃, 反应3 h的条件下, [Bmim][Co(Co)4]催化剂循环使用4次, 氯乙酸甲酯的平均转化率为94.3%, 丙二酸二甲酯的平均选择性和平均产率分别为98.5%和92.9%. 与传统的Na[Co(Co)4]催化剂相比, [Bmim][Co(Co)4]催化剂在保证高活性的条件下可以实现羰基钴催化剂的直接循环使用.  相似文献   

8.
The synthesis of dimethyl carbonate (DMC) from methanol and ethylene carbonate (EC) without using any solvent was investigated in the presence of ionic liquids as catalysts. The conversion of ethylene carbonate was affected by the structure of ionic liquid. For a series of 1-alkyl-3-methylimidazolium ionic liquids, the one with shorter alkyl chain and the one with more nucleophilic anion showed higher reactivity. The conversion of EC also increased with CO2 pressure and reaction temperature. Esterification of EC and methanol can be considered as a pseudo-first order reaction with respect to EC concentration. The activation energy was estimated as 50.1 kJ/mol.  相似文献   

9.
Cyclo(l-beta-3,7-dimethyloctylasparaginyl-L-phenylalanyl) (1) and cyclo(L-beta-2-ethylhexylasparaginyl-L-phenylalanyl) (2), prepared from L-asparaginyl-L-phenylalanine methyl ester, have been found to be specialist gelators for ionic liquids. They can gel a wide variety of ionic liquids, including imizazolium, pyridinium, pyrazolidinium, piperidinium, morpholinium, and ammonium salts. The mean minimum gel concentrations (MGCs) necessary to make gels at 25 degrees C were determined for ionic liquids. The gel strength increased at a rate nearly proportional to the concentration of added gelator. The strength of the transparent gel of 1-butylpyridinium tetrafluoroborate ([C(4)py]BF(4)), prepared at a concentration of 60 g L(-1) (gelator 1/[C(4)py]BF(4)), was ca. 1500 g cm(-2). FT-IR spectroscopy indicated that a driving force for gelation was intermolecular hydrogen bonding between amides and that the phase transition from gel to liquid upon heating was brought about by the collapse of hydrogen bonding. The gels formed from ionic liquids were very thermally stable; no melting occurs up to 140 degrees C when the gels were prepared at a concentration of 70 g L(-1) (gelator/ionic liquid). The ionic conductivities of the gels were nearly the same as those of pure ionic liquids. The gelator had electrochemical stability and a wide electrochemical window. When the gels were prepared from ionic liquids containing propylene carbonate, the ionic conductivities of the resulting gels increased to levels rather higher than those of pure ionic liquids. The gelators also gelled ionic liquids containing supporting electrolytes.  相似文献   

10.
Allylation of dimethyl malonate with 1-(4-chlorophenyl)prop-2-enyl methyl carbonate in the presence of [Pd(All)Cl]2, [Rh(COD)Cl]2, [Ir(COD)Cl]2 (COD is cycloocta-1,5-diene), and a chiral ferrocenyl-containing phosphite ligand based on (R)-BINOL (BINOL is 2,2′-dihydroxy-1,1′-binaphthyl) in CH2Cl2 gave a mixture of linear and branched cross-coupling products, the latter having a moderate optical purity (below 51%). The rhodium-and iridium-catalyzed reactions were very highly regioselective (regiospecific in the case of Ir), giving a branched product. In ionic liquids ([bmim][BF4] and [bdmim][BF4]) (bmim is 1-butyl-3-methylimidazolium and bdmim is 1-butyl-2,3-dimethylimidazolium), the Ir-catalyzed reaction regiospecifically afforded a branched product as a racemate. The same result was obtained with [Ir(COD)Cl]2 as a catalyst; this reaction easily occurred in ionic liquids even without a base. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 519–521, March, 2007.  相似文献   

11.
This article describes 1) a methodology for the green synthesis of a class of methylammonium and methylphosphonium ionic liquids (ILs), 2) how to tune their acid–base properties by anion exchange, 3) complete neat‐phase NMR spectroscopic characterisation of these materials and 4) their application as active organocatalysts for base‐promoted carbon–carbon bond‐forming reactions. Methylation of tertiary amines or phosphines with dimethyl carbonate leads to the formation of the halogen‐free methyl‐onium methyl carbonate salts, and these can be easily anion‐exchanged to yield a range of derivatives with different melting points, solubility, acid–base properties, stability and viscosity. Treatment with water, in particular, yields bicarbonate‐exchanged liquid onium salts. These proved strongly basic, enough to efficiently catalyse the Michael reaction; experiments suggest that in these systems the bicarbonate basicity is boosted by two orders of magnitude with respect to inorganic bicarbonate salts. These basic ionic liquids used in catalytic amounts are better even than traditional strong organic bases. The present work also introduces neat NMR spectroscopy of the ionic liquids as a probe for solute–solvent interactions as well as a tool for characterisation. Our studies show that high catalytic efficacy of functional ionic liquids can be achieved by integrating their green synthesis, along with a fine‐tuning of their structure. Demonstrating that ionic liquid solvents can be made by a truly green procedure, and that their properties and reactivity can be tailored to the point of bridging the gap between their use as solvents and as catalysts.  相似文献   

12.
An experimental study was carried out on the direct nitration of 1,4,5,8-tetraaza-bicyclo-[4,4,0]-decane to synthesize 1,4,5,8-tetranitro-1,4,5,8-tetraazabicyclo-[4,4,0]-decane(TNAD) with N2O5 catalyzed by acidic ionic liquids. Various ionic liquids, such as [HMim]X, [(CH2)4SO3HMim]X and [Capl]X(X = pTSO, NO3, HSO4), and various parameters such as equivalents of ionic liquid, molar ratio of N2O5 to the starting material, reaction time and temperature, and solvent were investigated. Ionic liquid [(CH2)4SO3HMim]HSO4 showed better catalytic activity. In the presence of 3% molar ratio of [(CH2)4SO3HMim]HSO4 ionic liquid to the staring material, the yield of 1,4,5,8-tetranitro-1,4,5,8-tetraazabicyclo-[4,4,0]-decane was improved by 6.2% compared to the system without ionic liquid.  相似文献   

13.
Electrophilic nitration of aromatics in ionic liquid solvents.   总被引:10,自引:0,他引:10  
Potential utility of a series of 1-ethyl-3-methylimidazolium salts [emim][X] with X = OTf-, CF3COO-, and NO3- as well as [HNEtPri2][CF3COO] (protonated Hünig's base) ionic liquids were explored as solvent for electrophilic nitration of aromatics using a variety of nitrating systems, namely NH4NO3/TFAA, isoamyl nitrate/BF3.Et2O, isoamyl nitrate/TfOH, Cu(NO3)/TFAA, and AgNO3/Tf2O. Among these, NH4NO3/TFAA (with [emim][CF3COO], [emim][NO3]) and isoamyl nitrate/BF3.Et2O, isoamyl nitrate/TfOH (with [emim][OTf]) provided the best overall systems both in terms of nitration efficiency and recycling/reuse of the ionic liquids. For [NO2][BF4] nitration, the commonly used ionic liquids [emim][AlCl4] and [emim][Al2Cl7] are unsuitable, as counterion exchange and arene nitration compete. [Emim][BF4] is ring nitrated with [NO2][BF4] producing [NO2-emim][BF4] salt, which is of limited utility due to its increased viscosity. Nitration in ionic liquids is surveyed using a host of aromatic substrates with varied reactivities. The preparative scope of the ionic liquids was also extended. Counterion dependency of the NMR spectra of the [emim][X] liquids can be used to gauge counterion exchange (metathesis) during nitration. Ionic liquid nitration is a useful alternative to classical nitration routes due to easier product isolation and recovery of the ionic liquid solvent, and because it avoids problems associated with neutralization of large quantities of strong acid.  相似文献   

14.
The enzymatic synthesis of polyesters by ring-opening polymerization (ROP) and polycondensation in three ionic liquids, i.e., [bmim][Tf2N], [bmim][PF6] and [bmim][BF4] was investigated. For the enzymatic ROP of ε-caprolactone it was found that [bmim][PF6] and [bmim][BF4] result in an inhomogeneous reaction mixture upon polymerization, causing polymerization characteristics similar to bulk polymerization. In contrast, for [bmim][Tf2N] characteristics similar to toluene were observed. Molecular weights of 7000-9500 g/mol were obtained. In the polycondensation of dimethyl adipate and dimethyl sebacate, respectively, with 1,4-butanol the low volatility of ionic liquids was successfully utilized to perform the reactions in an open vessel at temperatures close to the boiling point of the condensation by-product. Molecular weights up to 5400 g/mol were obtained. This, in combination with the tunable solvent hydrophilicity of ionic liquids could offer an advantage in the polymerization of highly polar monomers with low solubility in organic solvents.  相似文献   

15.
[reaction: see text] In the presence of NaY faujasite as the catalyst, the reaction of bifunctional anilines (1-4: XC6H4NH2; X = OH, CO2H, CH2OH, and CONH2) with methyl alkyl carbonates [MeOCO2R': R' = Me or MeO(CH2)2O(CH2)2] proceeds with a very high mono-N-methyl selectivity (XC6H4NHMe up to 99%), and chemoselectivity as well, with other nucleophilic functions (OH, CO2H, CH2OH, CONH2) fully preserved from alkylation and/or transesterification reactions. Aromatic substituents, however, modify the relative reactivity of amines 1-4: good evidence suggests that, not only steric and electronic effects, but, importantly, direct acid-base interactions between substituents and the catalyst are involved. Weakly acidic groups (OH, CH2OH, CONH2, pKa > or = 10) may help the reaction, while aminobenzoic acids (pKa of 4-5) are the least reactive substrates. The solvent polarity also affects the reaction, which is faster in xylene than in the more polar diglyme. The mono-N-methyl selectivity is explained by the adsorption pattern of reagents within the zeolite pores: a B(Al)2 displacement of the amine on methyl alkyl carbonate should occur aided by the geometric features of the NaY supercavities. Different factors account for the reaction chemoselectivity. Evidence proves that the polarizability of the two nucleophilic terms (NH2 and X groups) of anilines is relevant, although adsorption and confinement phenomena of reagents promoted by the zeolite should also be considered.  相似文献   

16.
In the presence of onium salts, at 140-170 degrees C, methyl alkyl carbonates [1a-c, ROCO2Me, R = MeO(CH2)2[O(CH2)2]n; n = 2-0, respectively] react with primary aromatic amines (XC6H4NH2, X= p-OMe, p-Me, H, p-Cl, p-CO2Me, o-Et, and 2,3-Me2C6H3NH2) to yield the corresponding N,N-dimethyl derivatives (ArNMe2) with high selectivity (up to 96%) and good isolated yields (78-95%). Phosphonium salts (e.g., Ph3PEtI and n-Bu4PBr) are particularly efficient catalysts. Overall, a solvent-free reaction is coupled with safe methylating agents (1a-c) made from nontoxic dimethyl carbonate.  相似文献   

17.
The orientation of the cation and the anion of room-temperature ionic liquids using sum frequency generation vibrational spectroscopy is reported. The ionic liquids are based on butyl-methyl imidazolium [BMIM]+ and hexyl-tributyl ammonium [N6444]+ together with dicyanamide [DCA]- as the anion. The tilt angle of the C3 axis of the methyl group from the alkyl chain in the cations was found to vary from 52 degrees to 80 degrees as a function of the distribution width sigma (which ranges from 0 degrees to 30 degrees with respect to the surface normal) for [BMIM][DCA] and similarly for [N6444][DCA]. The orientation of the C2 axis in the dicyanamide anion as a function of the twist angle phi, varied between 46 degrees and 90 degrees for [BMIM][DCA] and from 53 degrees to 90 degrees for [N6444][DCA]. These results suggest the presence of both ionic species at the gas-liquid interface and help describe the behavior of a simple inorganic anion at the surface.  相似文献   

18.
We investigate seven 1-alkyl-1-methylpyrrolidinium-based ionic liquids, [C(n)C(1)Pyrr][X], using X-ray photoelectron spectroscopy (XPS). The electronic environment for each element is analysed and a robust fitting model is developed for the C 1s region that applies to each of the ionic liquids studied. This model allows accurate charge correction and the determination of reliable and reproducible binding energies for each ionic liquid studied. The electronic interaction between the cation and anion is investigated for ionic liquids with one and also two anions. i.e., mixtures. Comparisons are made to imidazolium-based ionic liquids; in particular, a detailed comparison is made between [C(8)C(1)Pyrr][X] and [C(8)C(1)Im][X](-), where X(?) is common to both ionic liquids.  相似文献   

19.
Volume parameters for room-temperature ionic liquids (RTILs) and salts were developed. For 59 of the most common imidazolium, pyridinium, pyrrolidinium, tetralkylammonium, and phosphonium-based RTILs, the mean absolute deviation (MAD) of the densities is 0.007 g cm-3; for 35 imidazolium-based room-temperature salts, the MAD is 0.020 g cm-3; and for 150 energetic salts, the MAD is 0.035 g cm-3. The experimental density (Y) for an alkylated imidazolium or pyridinium-based room-temperature ionic liquid is approximately proportional to its calculated density (X) in the solid state: Y = 0.948X - 0.110 (correlation coefficient: R2 = 0.998, for BF4-, PF6-, NTf2- -containing ionic liquids); Y = 0.934X - 0.070 (correlation coefficient: R2 = 0.999, for OTf-, CF3CO2-, N(CN)2- -containing ionic liquids).  相似文献   

20.
《天然气化学杂志》2012,(4):476-479
Promoted catalytic reaction between methanol and CO2 for dimethyl carbonate(DMC) synthesis is conducted over K2CO3/CH3 I catalyst in the presence of ionic liquid under microwave irradiation.The effect of ionic liquids incorporated with microwave irradiation on the yield of DMC is investigated.DMC was found to form at lower temperature in a relative short time,which indicated an enhanced catalytic process by ionic liquid.Among the ionic liquids used,1-butyl-3-methylimidazolium chloride is the most effective promoter.Density functional theory calculations indicate that CO2 bond lengths and angles changed due to the molecular interaction of ionic liquid and CO2,resulting in the activation of CO2 molecules and consequently the acceleration of reaction rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号