首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The reaction of a hydrated nitrate salt of lanthanide(III) (Ln=Er, Ho, Tb, Gd) or yttrium(III) (Y) with the ligand di-2-pyridyl ketone-p-Cl-benzoylhydrazone (DpkClBH), afforded air stable solid compounds. The new complexes characterized by means of elemental analysis (C, H, N, Ln), magnetic moment determinations and spectroscopic data (IR, MS). It is proposed that they are cationic of the general type: [Ln(DpkClBH)2(NO3)2]NO3·nH2O, (n=2, 1, 1, 1, 1.5 for Ln=Y, Gd, Tb, Ho, Er, respectively). Their thermal decomposition was studied in nitrogen atmosphere, between 25–980°C, by using simultaneous TG/DTG-DTA technique. The IR spectroscopy used to determine the intermediates and the final products. The anhydrous nitrate complexes decomposed to the intermediates Ln(DpkClBH)(NO3)2, which upon further heating give a carbonaceous residue of Ln2O3 at 980°C. The mass spectra revealed the molecular ions of the complexes and their possible fragmentation pattern.  相似文献   

2.
Until now, although there are many examples of studying the magnetic properties of Schiff base binuclear lanthanide complexes, the relationship between the structure and magnetic properties of the complexes still is worth further investigation in order to improve the magnetic properties of Schiff base lanthanide complexes. In this work, we successfully obtained two series of binuclear Ln complexes by in situ reaction of 4-diethylaminosalicylaldehyde, benzoic hydrazide and different lanthanide salts at 80°C under solvothermal conditions, namely, [Ln2(L)3(NO3)3]·CH3CN·CH3OH·H2O [Ln = Dy ( 1 ), Ho ( 2 ), Gd ( 3 ) L = deprotonated 4-diethylamino salicylaldehyde benzoylhydrazine], [Ln2(L)4(CH3COO)]CH3COO·CH3CN [Ln = Dy ( 4 ), Ho ( 5 ), Gd ( 6 )]. The complex 1 contains three Schiff base ligands L, two Dy (III) ions, and three NO3. The ligand H1L is formed by in situ Schiff base reaction with 4-diethylaminosalicylaldehyde and benzoic hydrazide with the participation of Ln (NO3)3. When replacing Ln (NO3)3 with Ln (OAc)3, obtained three μ2-OAc bridged binuclear Ln (III) complexes. The magnetic study showed that complex 4 exhibits field-induced single-molecule magnet (SMM) behavior while complex 1 does not show any SMMs behavior. In addition, we have studied the magnetocaloric effect of complexes 3 and 6 , their maximum −ΔSm values are 21.37 J kg−1 K−1 and 15.32 J kg−1 K−1, respectively, under ΔH = 7 T and T = 2 K.  相似文献   

3.
Two lanthanide complexes with 2-fluorobenzoate (2-FBA) and 1,10-phenanthroline (phen) were synthesized and characterized by X-ray diffraction. The structure of each complex contains two non-equivalent binuclear molecules, [Ln(2-FBA)3?·?phen?·?CH3CH2OH]2 and [Ln(2-FBA)3?·?phen]2 (Ln?=?Eu (1) and Sm (2)). In [Ln(2-FBA)3?·?phen?·?CH3CH2OH]2, the Ln3+ is surrounded by eight atoms, five O atoms from five 2-FBA groups, one O atom from ethanol and two N atoms from phen ligand; 2-FBA groups coordinate Ln3+ with monodentate and bridging coordination modes. The polyhedron around Ln3+ is a distorted square-antiprism. In [Ln(2-FBA)3?·?phen]2, the Ln3+ is coordinated by nine atoms, seven O atoms from five 2-FBA groups and two N atoms of phen ligand; 2-FBA groups coordinate Ln3+ ion with chelating, bridging and chelating-bridging three coordination modes. The polyhedron around Ln3+ ion is a distorted, monocapped square-antiprism. The europium complex exhibits strong red fluorescence from 5D0?→?7F j ( j?=?1–4) transition emission of Eu3+.  相似文献   

4.
Tian  J.  Jiang  H.  Gong  H.  Sun  Z. 《Journal of Thermal Analysis and Calorimetry》2004,77(3):825-831
Hydrated methanesulfonates Ln(CH3SO3)3·nH2O (Ln=La, Ce, Pr, Nd and Yb) and Zn(CH3SO3)2·nH2O were synthesized. The effect of atmosphere on thermal decomposition products of these methanesulfonates was investigated. Thermal decomposition products in air atmosphere of these compounds were characterized by infrared spectrometry, the content of metallic ion in thermal decomposition products were determined by complexometric titration. The results show that the thermal decomposition atmosphere has evident effect on decomposition products of hydrated La(III), Pr(III) and Nd(III) methanesulfonates, and no effect on that of hydrated Ce(III), Yb(III) and Zn(II) methanesulfonates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
New transition metal compounds of the general formula Ln(NO3)3·2[N4(CH2)6]·nH2O, where Ln = La, Nd, Sm, Gd, Tb, Dy, Er, Lu, and n = 7-12, were obtained. The compounds and the gases evolved in the course of their thermal decomposition were characterised by thermogravimetric analysis. The measurements were carried out in air and argon environment in order to compare the intermediate products, final products and the mechanism of the thermal decomposition. The combined TG-MS system was used to identify the main volatile products of thermal decomposition and fragmentation processes of the obtained compounds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Two isostructural heterometallic complexes, {[Dy3Ni3(H2O)3(mpko)9(O2)(NO3)3](ClO4) · 3CH3OH · 3CH3CN} ( 1 ) and {[Gd3Ni3(H2O)3(mpko)9(O2)(NO3)3](NO3) · 10.75CH3OH} ( 2 ) [mpkoH = 1‐(pyrazin‐2‐yl)ethanone oxime], were solvothermally synthesized by varying lanthanide ions with different magnetic anisotropy. Structural analyses revealed that both complexes contain a peroxide anion‐aggregated triangular {Ln33‐Ο2)}7+ core, which is surrounded by three NiII octahedra through threefold oxime linkages into a heterometallic hexanuclear cluster. Apparent antiferromagnetic interactions are observed between the adjacent spin carriers of 1 and 2 with the coupling constant JLn ··· Ni ≈ 12JLn ··· Ln. Additionally, 1 with highly anisotropic DyIII site shows slow magnetization relaxation under zero dc field and 2 constructed from isotropic GdIII ion displays significant cryogenic magnetocaloric effect with a maximum entropy change of 24.8 J · kg–1 · K–1 at 3.0 K and 70 kOe.  相似文献   

7.
The reaction of a lanthanide(III) nitrate (Ln = Pr, Nd) with the base 2, 2′‐dipyridylamine (dpamH) afforded two very stable microcrystalline compounds. These compounds were characterized as complex salts with the general formula [Ln(NO3)6] · 3[dpamH‐H+] · H2O, where the dpamH ligand is not coordinated, but exists in its protonated form serving as counterion (dipyridylammonium cation), as it was revealed by single‐crystal X‐ray diffraction studies. Each one of the nitrate ions is coordinated, however, in a bidentate manner with the lanthanide(III) ion, which obtains coordination number twelve. All organic dpamH‐H+ cations are arranged in two columns parallel to the a axis of the cell forming pairs of almost parallel cationic molecules at a distance of about 3.5 Å. Inside each pair the molecules interact by strong π–π interactions. The water molecules, arranged between the inorganic anions [Ln(NO3)6]3–, bridge them by strong hydrogen bonds, involving the water proton and one nitrate oxygen. The lattice can be described as made from successive organic and inorganic alternating parallel columns interacting between them with strong hydrogen bonds. The thermal stability and decomposition mode of the two lanthanide compounds were studied by the simultaneous TG/DTG‐DTA technique and compared with the starting hexahydrate lanthanide(III) salts and the dipyridylamine.  相似文献   

8.
Newly designed hetero-dinuclear 3d–4f complex [Cu(L)La (NO3)2(μ-NO3)(H2O)]·EtOH ( 1 ), hetero-tetranuclear 3d–4f complex [Cu(L)Ce (NO3)2(μ-NO3)(OAc)2]2·MeOH ( 2 ) and hetero-multinuclear 3d–4f complexes [{Cu(L)Ln (NO3)3}2][Cu(L)Ln (NO3)3]2 (Ln = Pr ( 3 ) and Nd = ( 4 )) have been self-assembled from the reaction of Cu (OAc)2·H2O, Ln (NO3)3·6H2O (Ln = La, Ce, Pr and Nd) with an unsymmetric salamo-like bisoxime ligand H2L (6-Methoxy-6′-ethoxy-2,2′-[ethylenedioxybis (nitrilomethylidyne)]diphenol) based on a Schiff base condensation of 2-[O-(1-ethoxyamide)]oxime-6-methoxyphenol and 3-ethoxysalicylaldehyde. The structures of complexes 1 – 4 were characterized by elemental analyses, PXRD analyses, IR, UV–Vis spectra, and single-crystal X-ray analyses. In addition, the supramolecular interactions and fluorescence properties of complexes 1 – 4 are discussed in detail. Moreover, the antioxidant activities of the complexes 1 – 4 were determined by superoxide radical-scavenging method in vitro, which indicates that the complexes 1 – 4 all show potential antioxidant properties.  相似文献   

9.
Ln(TFA)3⋅3AZA (Ln=La, Sm, Er; TFA=trifluoroacetate and AZA=2-azacyclononanone)compounds were synthesized and characterized by microanalytical procedures, IR spectroscopy, X-ray powder diffraction, and thermal analysis. A kinetic study using La, Sm and Er thermogravimetric curves was carried out aiming to proposing a mechanism for the thermal decomposition of such complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A series of mer‐[Ln(NO3)3(Ph3PO)3] complexes were prepared from Ln(NO3)3 · xH2O and Ph3PO in chloroform (Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, and Er). The La and Nd complexes were 0.25 CHCl3 solvates, whereas the others were solvent‐free. The identical reaction using Yb(NO3)3 · xH2O produced the unique salt trans‐[Yb(NO3)2(Ph3PO)4][Yb(NO3)4(Ph3PO)] · Et2O. All nitrate ions in all complexes are η2‐chelating. A comparison of the various [Ln(NO3)3(Ph3PO)3] structures, including those in the literature, reveals at least four common polymorphs, each of which is represented by isomorphic structures of multiple Ln ions. Luminescence of mer‐[Ln(NO3)3(Ph3PO)3] (Ln = Y, La, Nd, Sm, Eu, Gd, Tb, and Dy), trans‐[Yb(NO3)2(Ph3PO)4][Yb(NO3)4(Ph3PO)] and Ph3PO assignments are reported. Latva's empirical rule allows for the antenna effect, in which energy is transferred from the triplet state of the Ph3PO ligand, to occur only for Tb3+. Excitation via Ph3PO results in strong green luminescence for Tb3+ having twice the intensity as that which results from direct excitation of the f‐f transitions.  相似文献   

11.
The thermal decomposition of several lanthanide salts Ln(CF3COO)3·3H2O (Ln=La, Gd, Tb) was studied under quasi-equilibrium conditions and under linear heating. According to mass spectral data, H2O is the single product of thermal decomposition up to 120-140°C. Thermogravimetric data were processed with 'Netzsch Thermokinetics' computer program. Kinetics parameters of the first decomposition step (as the simple dehydration process, not complicated by the water hydrolysis with the liberation or the decomposition of the organic ligand) were calculated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Seven lanthanide complexes [Ln(OPPh3)3(NO3)3] ( 1 – 3 ) (OPPh3 = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh3)4(NO3)2](NO3) ( 4 ), [Ln(OPPh3)3(NO3)3]2 ( 5 – 7 ) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh3 ligand in the air. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1 – 4 are mononuclear complexes formed by OPPh3 ligands and nitrates. The asymmetric units of complexes 5 – 7 consist of two crystallographic‐separate molecules. Complex 1 is self‐assembled to construct a 2D layer‐structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain‐like structure that was assembled by OPPh3 ligands and nitrate ions through C–H ··· O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb3+ (λem = 480, 574 nm) and Eu3+ (λem = 552, 593, 619, 668 nm).  相似文献   

13.
Recrystallization of Ln(NO3)3 (Ln = Sm, Eu, Yb) in the presence of 18‐crown‐6 under aqueous conditions yielded [Ln(NO3)3(H2O)3] · 18‐crown‐6. X‐ray crystallography revealed isomorphous structures for each of the lanthanide complexes where [Ln(NO3)3(H2O)3] is involved in hydrogen bonding interactions with 18‐crown‐6. The transition point where the structural motif changes from [Ln(18‐crown‐6)(NO3)3] (with the metal residing in the crown cavity) to [Ln(NO3)3(H2O)3] · 18‐crown‐6 has been identified as at the Nd/Sm interface. A similar investigation involving [Ln(tos)3(H2O)6] (tos = p‐toluenesulfonate) and 18‐crown‐6 were resistant to crown incorporation. X‐ray studies show extensive intra‐ and intermolecular hydrogen bonding is present.  相似文献   

14.
The thermal decomposition of lanthanide complexes, with a general formula: [LnL(NO3)2](NO3), where Ln = La, Pr, Nd, Sm, Gd, Tb, Dy, and Er; and L = bis-(salicyladehyde)-1,3-propylenediimine Schiff base ligand, was studied by thermogravimetric (TG) and derivative thermogravimetric (DTG) techniques. The TG and DTG data indicated that all complexes are thermostable up to 398 K. The thermal decomposition of all Ln(III) complexes was a two-stage process and the final residues were Ln2O3 (Ln = La, Nd, Sm, Gd, Dy, Er), Tb4O7, and Pr6 O11. The activation energies of thermal decomposition of the complexes were calculated from analysis of the TG-DTG curves using the Kissinger, Friedman, and Flynn-Well-Ozawa methods.  相似文献   

15.
The reactions of Ln(NO3)3 · 6H2O and 4‐acetamidobenzoic acid (Haba) with 4,4′‐bipyridine (4,4′‐bpy) in ethanol solution resulted in three new lanthanide coordination polymers, namely {[Ln(aba)3(H2O)2] · 0.5(4,4′‐bpy) · 2H2O} [Ln = Sm ( 1 ), Gd ( 2 ), and Er ( 3 ), aba = 4‐acetamidobenzoate]. Compounds 1 – 3 are isomorphous and have one‐dimensional chains bridged by four aba anions. 4,4′‐Bipyridine molecules don’t take part in the coordination with LnIII ions and occur in the lattice as guest molecules. Moreover, the adjacent 1D chains in the complex are further linked through numerous N–H ··· O and O–H ··· O hydrogen bonds to form a 3D supramolecular network. In addition, complex 1 in the solid state shows characteristic emission in the visible region at room temperature.  相似文献   

16.
trans‐[Ln(NO3)2(Ph3AsO)4](NO3)2 ( 1 ) and mer‐[Ln(NO3)3(Ph3AsO)3] ( 2 ) complexes were prepared from Ln(NO3)3 · xH2O and Ph3AsO in chloroform (Ln = Y, Sm, Eu, Tb, and Dy). Production of complexes 1 vs. 2 and solvent content was found to be highly dependent on crystallization solvent choice. Tb and Eu produced only 1 , while the other Ln metals produced both 1 and 2 . Solvent‐free, acetone‐, and methanol‐containing polymorph series were identified for complexes 1 . Acetone/ether‐ and CH2Cl2‐containing polymorph series were identified for complexes 2 . Luminescence measurements were performed on solvent‐free 1 (Ln = Y, Eu, Tb, and Dy) and 2 (Ln = Sm) at 78 K. Sensitized lanthanide emission bands via resonance energy transfer were observed in all cases, except the control (Ln = Y). The efficiency of this energy transfer process varies amongst the lanthanide metals studied and was rationalized using Latva's empirical rule and Density Functional Theory calculations.  相似文献   

17.
Nine novel heteronuclear complexes of Ln(III)-Cu(II) with salicylidene tetraethylene glycol diamine (SALTTA) have been synthesized and characterized. They have the general formulae [LnCu2(SALTTA)2(NO3)3](NO3)4·3H2O (Ln=La, Pr, Nd, Sm) and [LnCu3(SALTTA)3(NO3)5]-(NO3)4·4H2O (Ln=Gd, Tb, Er, Yb, Y). The IR spectra show that vC=N in the Ln(III)-Cu(II) heteronuclear complexes are splitted up into two peaks with a far distance. It has been confirmed that oxygen atoms in oxyethylene of the ligand are not all coordinated to the central metal ions by both IR and NMR methods.  相似文献   

18.
以3,3'',5,5''-四-(羧基苯基)联苯为配体(H4L),与镧系金属Ln(Ⅲ)盐反应,自组装形成了5个具有三维孔洞结构的镧系金属-有机框架材料:{[Ln3L2(H2O)7]·(OH)·10DMA}n(Ln=Gd (1a); Ln=Ho(2a), {[Ln3L2(H2O)3]·(OH)·mDMA}n (Ln=Er,m=10(1b); Ln=Yb, m=9(2b); Ln=Lu, m=10(3b))。单晶X射线衍射分析表明,这些MOFs属于2种系列的类质同晶化合物,分别属于正交晶系Ccca空间群和单斜晶系C2/c空间群。有机小分子溶剂交换荧光研究发现,2b对小分子二氯甲烷和甲苯荧光有增强效应,表现出良好的荧光探测功能。  相似文献   

19.
Reactions of H3tda (H3tda = 1H‐1, 2, 3‐triazole‐4, 5‐dicarboxylic acid) with Sm(NO3)3 · 6H2O, Eu(NO3)3 · 6H2O, and Tb(NO3)3 · 6H2O, in the presence of NaOH under hydrothermal conditions, produced three new coordination polymers, [Ln2(tda)2(H2O)3] · 5H2O [Ln = Sm ( 1 ), Eu ( 2 ), Tb ( 3 )]. These compounds were structurally characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA), PXRD and single‐crystal X‐ray diffraction. The single‐crystal X‐ray diffraction studies of compounds 1 – 3 reveal that all compounds are three‐dimensional porous structures with chiral frameworks. Furthermore, the luminescence studies of compound 2 and 3 in the solid state reveal that they are potential luminescent materials at room temperature.  相似文献   

20.
Five isostructural tetranuclear lanthanide complexes with the general formula [Ln4(teaH2)2(teaH)2(NO3)6] · 2CH3OH [Ln3+ = Dy3+ ( 1 ), Tb3+ ( 2 ), Ho3+ ( 3 ), Er3+ ( 4 ), and Gd3+ ( 5 )] were successfully synthesized by the reaction of various lanthanide nitrate and triethanolamine (teaH3) ligand. Single crystal X-ray analyses reveal the eight-coordinate Ln3+ centers adopt a slightly distorted triangular dodecahedron geometry and nine-coordinate Ln3+ ions own an approximately capped square antiprism environment in similar zigzag Ln4 core. Magnetic studies demonstrate the presence of anitferromagnetic interactions between Ln3+ centers without obvious SMM behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号