首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures and vibrational frequencies of uranyl carbonates, [UO2(CO3)n](2-2n) and [(UO2)3(CO3)6]6-, uranyl nitrates, [UO2(NO3)n](2-n), and uranyl acetates, [UO2(CH3COO)n](2-n) (n = 1,2,3) have been calculated by using local density functional theory (LDFT). Only bidentate ligand coordination modes to the uranyl dication have been modeled. The calculated structures and frequencies are compared to available experimental data, including IR, Raman, X-ray diffraction, and EXAFS solution and crystal structure data. The energetics of ligand binding have been calculated using the B3LYP hybrid functional. In general, the structural and vibrational results at the LDFT level are in good agreement with experimental results and provide realistic pictures of solution phase and solid-state behavior. For the [UO2(CO3)3]6- anion, calculations suggest that complexity in the CO3(2-) stretching signature upon complexation is due to the formation of C=O and C-O domains, the latter of which can split by as much as 300 cm(-1). Assessment of the binding energies indicate that the [UO2(CO3)2]2- anion is more stable than the [UO2(CO3)3]4- anion due to the accumulation of excess charge, whereas the tri-ligand species are the most stable in the nitrate and acetate anions.  相似文献   

2.
A one-component approach to molecular electronic structure is discussed that includes the dominant relativistic effects on valence electrons and yet allows the use of the traditional quantum-chemistry techniques. The approach starts with one-component Cowan–Griffin relativistic orbitals that successfully incorporate the effects of the mass-velocity and Darwin terms present in more complicated wave functions such as the Dirac–Hartree–Fock. The approach then constructs “relativistic” effective core potentials (RECPS ) from these orbitals, and uses these to bring the relativistic effects into the molecular electronic calculations. The use of effective one-electron spin-orbit operators in conjunction with these one-component wave functions to include the effects of spin-orbit coupling is discussed. Applications to molecular systems involving heavy atoms and comparisons with available spectroscopic data on molecular geometries and excitation energies are presented. Finally, a new approach to the construction of RECPS encompassing the Hamiltonian and shapeconsistent approach is presented together with a novel analysis of the long-range behavior of the RECPS .  相似文献   

3.
 A complete set of fully-relativistic benchmark results for the bond lengths and vibrational frequencies of uranyl at various levels of correlation treatment are presented. It is shown that the relativistic and correlation effects are of the same magnitude and should be treated on an equal footing. Results of uranyl calculations using various relativistic effective core potentials (RECP) are presented. Appropriate choices for RECPs for use in density functional theory (DFT) calculations in the local density approximation (LDA) and with the gradient-corrected B3LYP exchange-correlation functional are discussed. The conclusion is reached that small-core RECPs need to be used and that the best results as compared to the benchmark values are obtained by using a DFT functional that includes some fraction of Hartree-Fock Exchange. Received: 18 May 2001 / Accepted: 25 July 2001 / Published online: 30 October 2001  相似文献   

4.
5.
Ab initio molecular geometries and vibrational frequencies of various isolated vanadate species (VO3−4, HVO2−4, H2VO4, and V2O4−7) were calculated using different pseudopotentials. The relative merits of these were assessed by comparing the calculated molecular parameters with the corresponding values obtained from calculations at all-electron levels and, whenever available, from X-ray studies for the salts. The calculations were extended to higher oligomers (V3O5−10, V4O6−13, and V4O4−12) using the pseudopotential whose basis functions are (10s5p5d)/[2s1p1d] (55/5/5) on vanadium and (4s4p)/[2s2p] (31/31) on oxygen, which yielded the best compromise between accuracy and computational effort. The results indicate a linear centrosymmetric geometry for the isolated V2O4−7 anion. The higher oligomers have less than 180° V(SINGLE BOND)O(SINGLE BOND)V angles, except the noncyclic tetraoligomer which has a linear central V(SINGLE BOND)O(SINGLE BOND)V angle (180°). The cyclic V4O4−12 species presents a planar structure with all the vanadium and bridging oxygen atoms in the same plane. This structure was alrea dy reported for the [(CH3)CNH3][V4O12] salt. The results suggest a lower stability of the linear V4O6−13 species, in agreement with previous reports. © 1996 by John Wiley & Sons, Inc.  相似文献   

6.
An ab initio calculation was performed on the electronic structures of MoS, MoS2-4 and Mo2S2 using relativistic effective core potential (RECP) for molybdenum, and non-relativistic ECP for sulfur. We predicted that the equilibrium bond length and the dissociation energy of MoS in ground state are 3.89 a.u. and 4.67 eV, respectively, and that the bond is a triple-bond. The ground state of MoS2-4 in Td symmetry is 1A1 and π-bonding dominates σ-donation in the molybdenum-sulfur interaction. The Mo2S2 is a model contracted from bi-nuclear sulfur-bridged clusters, and the bonding orbitals 1b1u, 1b1g and 1b2g make the dominant contribution to the stabilization of sulfur-bridged species.  相似文献   

7.
8.
The potential energy surface of curcumin [1,7‐bis(4‐hydroxy‐3‐methoxyphenyl)‐1,6‐heptadiene‐3,5‐dione] was explored with the DFT correlation functional B3LYP method using 6‐311G* basis. The single‐point calculations were performed at levels up to B3LYP/6‐311++G**//B3LYP/6‐311G*. All isomers were located and relative energies determined. According to the calculation the planar enol form is more stable than the nonplanar diketo form. The results of the optimized molecular structure are presented and compared with the experimental X‐ray diffraction. In addition, harmonic vibrational frequencies of the molecule were evaluated theoretically using B3LYP density functional methods. The computed vibrational frequencies were used to determine the types of molecular motions associated with each of the experimental bands observed. Our vibrational data show that in both the solid state and in all studied solutions curcumin exists in the enol form. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

9.
用B3LYP密度泛函方法在6-311G**基组水平上计算了单元、二元羟甲基间苯二酚的分子体积和振动频率,通过理论计算与实验结果的比较,探讨了间苯二酚-甲醛气凝胶形成的微观机理,具体分析了各振动模式的归属和同位素取代对振动频率的影响.  相似文献   

10.
The geometry, frequency and intensity of the vibrational bands of 8-hydroxyquinoline N-oxide (8-HQNO) and its deuterated derivative (8-DQNO) were obtained by the density functional theory (DFT) with the BLYP and B3LYP functionals and 6-31G(d,p) basis set. The optimized bond lengths and bond angles are in good agreement with the X-ray data. The IR and INS spectra of 8-HQNO and 8-DQNO computed at the DFT level reproduce the vibrational wavenumbers and intensities with an accuracy, which allows reliable vibrational assignments.  相似文献   

11.
The requirements necessary to extend an ECP basis set for the calculation of electric and linear optical properties to the transition metals are studied. Previously an augmentation of the SBK basis set for 39 elements with s and p electron only valences (H-Rn, excluding Ga, In, and Tl) [J. Comput. Chem., 2005, 26, 1464-1471] was presented. In this work, electric dipole moments, polarizabilities, and anisotropies of selected metal hydrides, sulfides, and bromides, cisplatin, and the Fe, Ru, and Os metallocene derivatives along with many other systems are calculated and discussed. ECP calculations of molecules containing 3d and 4d metal centers among main group atoms have good agreement, often within 1-2% of the all-electron result at the time-dependent Hartree-Fock (TDHF)/Sadlej level of theory. Molecules with a 5d metal center have a large difference from and are more accurate than the all-electron results due to the inclusion of relativistic effects in the ECPs. The polarizability as calculated with and without ECPs of metallic clusters and surfaces is increasingly different as atomic number increases, again due to a lack of relativistic effects in the all-electron calculations. The augmented ECP calculations are consistent with relativistic all-electron results, while the Sadlej calculations are consistent with other nonrelativistic results. Both relativistic and basis set effects are less noticeable when the metal is in a formally positive state.  相似文献   

12.
Conclusions The vibrational spectra of crystalline ethylenedinitramine, ethylenedinitramine labeled with N15, as well as their deutero-derivatives were studied. Assignment of the vibration frequencies of the nitramine fragment is proposed.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2194–2197, October, 1969.The authors would like to thank B. Lokshin for recording the IR spectra in this region, as well as A. Bobrov for recording the Raman spectra.  相似文献   

13.
A development of the RECP method for the case of transition and rare earth elements is suggested. New terms with projectors on the occupation numbers ofd andf outermost shells respectively (which can be determined in SCF iterations) are added to the standard RECP operator and the corresponding self-consistent RECP terms are generated for atoms Cu, Ag and Au. Significant improvement is achieved in reproduction of atomic excitation energies as compared with the conventional shape-consistent RECP calculation.  相似文献   

14.
Potential energy curves and properties of the low-lying electronic states of tellurium oxide have been computed using a configuration interaction treatment that includes the spin-orbit coupling interaction. Relativistic effective core potentials (RECPs) are used to describe the inner shells of both the Te and O atoms. Good agreement is obtained for the spectroscopic constants of the X1-X2(3)sigma-, a1delta, and b1sigma+ states for which experimental data are available. The ratio of the parallel and perpendicular b-X transition moments, as well as the radiative lifetime of the b state, was computed, and both results were also found to be in good agreement with measurement. The energetic order of the electronic states in TeO appears to be very similar to that observed for the isovalent O2 molecule, but the Rydberg valence-mixing effects that are so prominent in the latter's spectrum (e.g., for the Schumann-Runge bands) are totally absent in TeO.  相似文献   

15.
16.
We present ONIOM and pure DFT calculations on infrared spectra of alpha-helical-capped polyalanines. The calculations used two-layer ONIOM (B3LYP/D95**:AM1) calculations of the amide I vibrational frequencies for acetyl(ala)NNH2 (N=8, 10, 12-18) whose structures have been previously completely optimized by the same method. These are the first such calculations based upon structures of alpha-helical peptides that are completely optimized using DFT or molecular orbital methods. As the peptide becomes longer, the amide I band becomes both more intense and more red shifted. However, the individual absorptions that contribute most to the band vary between three patterns: one very intense absorption, two absorptions of similar intensity, and two strong absorptions where one is roughly twice as intense as the other. This pattern appears to be related to the relative number of H bonds in the individual H-bonding chains; however, there is one exception. Using 14C=O's to selectively decouple specific C=O's, we found that the couplings between the C=O's within each of the three individual H-bonding chains within the helices follow the same pattern previously reported for planar H-bonding chains of formamides. The coupling between the H-bonding chains appears to involve through-space coupling between the H-bonding chains. While decoupling individual C=O's always decreases the intensity of the amide I band, it leads to complex changes in the individual amide I absorptions that contribute to the band. Depending upon the position of the 14C=O, the amide I band can either red or blue shift. Moreover, the individual absorptions that contribute to the band can increase or decrease in intensity as well as shift. The patterns of the individual absorptions (mentioned above) also change. Using the C=O stretch of acetamide as a reference, we calculate the red shifts for the most intense absorptions to be much greater than predicted by the transition dipole method.  相似文献   

17.
The vibrational spectra (i.r., far i.r. and Raman) of 4,6-dimethyl-2-mercaptopyrimidine and 4,6-dihydroxy-2-methylmercaptopyrimidine have been reported along with their assignments. Hydrogen bonding and tautomeric behaviour are discussed. Electronic spectra in various solvents at different pH values are recorded. The effect of a change of solvent on the electronic transitions of both compounds is explained along with the bathochromic and hypsochromic shifts observed when the neutral form of the compound is changed to the anionic or cationic form.  相似文献   

18.
Theoretical potential energy curves are computed for the X 2Σ+ and A 2Π states of CsO using a relativistic effective core potential and a large valence Gaussian basis set. Seventeen electrons are correlated by a CI (SD ) calculation from each HF reference. We find the X 2Σ+ state lower by 497 and 726 cm?1 at the HF and CI(SD) levels. Our calculated ωe of 312 cm?1 for the X 2Σ+ state agrees well with experimental values deduced from studies in matrices.  相似文献   

19.
In this paper, the authors report Raman spectra obtained on imidazolium di-μ-hydroxybis[dioxobis-(nitrato)uranium(VI)], (UO2(NO3)2(OH))2.2C3H5N2 (IUNH). An assignment of the Raman bands is made by comparing the spectrum of IUNH with those of uranyl nitrate hexahydrate (UNH) and imidazole (IMID). The electron charge transfer from the imidazole ring to the uranyl ion has been empirically determined.  相似文献   

20.
《Chemical physics》1986,106(2):195-203
The lowest states of HgH are calculated using a non-empirical relativistic effective core potential considering the mercury atom as a two-electron system. The configuration interaction is done within the CIPSI algorithm. Core-valence polarization and correlation energy are included through a perturbation treatment. The spin-orbit coupling is introduced through an effective hamiltonian in a basis of LS states. Results obtained for the lowest states of HgH are in fair accordance with experimental results. The “atom in molecule” approximation for SO coupling is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号