首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological mechanisms offer significant improvement in the efficiency of next generation energy systems. Motivated by new developments in distensible pumping systems, ionic electro-kinetic manipulation and nanoscale liquids (”nanofluids”), in the present study a mathematical model is developed to simulate the entropy generation and electro-osmotic transport of nanofluids in a curved deformable microchannel driven by peristaltic transport. Both thermal and species (nano-particle) buoyancy effects are included and Soret and Dufour cross-diffusion effects. The appropriate conservation equations are normalized with scaled variables and the resulting dimensionless nonlinear boundary value problem is solved in a transformed coordinate system. Simplification of the mathematics is achieved via lubrication approximations and low zeta potential (Debye Hückel linearization). The effects of various parameters, i.e. electro-osmotic velocity, EDL (electrical double layer) thickness and zeta potential ratio on velocity profile and temperature profiles are computed. The effects of Brinkman number (viscous heating parameter) and Joule (electrical field heating) parameter on nano-particle concentration profiles are also simulated. The micro-channel curvature effects on the nanofluid flow characteristics and thermal characteristics are also computed. Furthermore, streamline patterns, temperature contours, nano-particles concentration contours and entropy generation rate contours are plotted for various curvature parameters. Results indicate that the curvature of the channel and electro-osmotic body force influence strongly the sources of entropy generation rate. The study finds applications in bio-inspired electro-osmotic nanofluid pumping in microscale energy applications.  相似文献   

2.
Entropy generation is the loss of energy in thermodynamical systems due to resistive forces,diffusion processes, radiation effects and chemical reactions. The main aim of this research is to address entropy generation due to magnetic field, nonlinear thermal radiation, viscous dissipation, thermal diffusion and nonlinear chemical reaction in the transport of viscoelastic fluid in the vicinity of a stagnation point over a lubricated disk. The conservation laws of mass and momentum along with the first law of thermodynamics and Fick's law are used to discuss the flow, heat and mass transfer, while the second law of thermodynamics is used to analyze the entropy and irreversibility. The numbers of independent variables in the modeled set of nonlinear partial differential equations are reduced using similarity variables and the resulting system is numerically approximated using the Keller box method. The effects of thermophoresis,Brownian motion and the magnetic parameter on temperature are presented for lubricated and rough disks. The local Nusselt and Sherwood numbers are documented for both linear and nonlinear thermal radiation and lubricated and rough disks. Graphical representations of the entropy generation number and Bejan number for various parameters are also shown for lubricated and rough disks. The concentration of nanoparticles at the lubricated surface reduces with the magnetic parameter and Brownian motion. The entropy generation declines for thermophoresis diffusion and Brownian motion when lubrication effects are dominant. It is concluded that both entropy generation and the magnitude of the Bejan number increase in the presence of slip. The current results present many applications in the lubrication phenomenon,heating processes, cooling of devices, thermal engineering, energy production, extrusion processes etc.  相似文献   

3.
《Comptes Rendus Physique》2016,17(10):1161-1174
This brief review presents the emerging field of mesoscopic physics with cold atoms, with an emphasis on thermal and ‘thermoelectric’ transport, i.e. coupled transport of particles and entropy. We review in particular the comparison between theoretically predicted and experimentally observed thermoelectric effects in such systems. We also show how combining well-designed transport properties and evaporative cooling leads to an equivalent of the Peltier effect with cold atoms, which can be used as a new cooling procedure with improved cooling power and efficiency compared to the evaporative cooling currently used in atomic gases. This could lead to a new generation of experiments probing strong correlation effects of ultracold fermionic atoms at low temperatures.  相似文献   

4.
程雪涛  张勤昭  徐向华  新刚 《中国物理 B》2013,22(2):20503-020503
The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection.Based on a two-dimensional model,the theoretical analysis shows that the minimum thermal resistance defined with the concept of entransy dissipation corresponds to the maximum heat transfer rate when the temperature of the heating surface is fixed.On the other hand,when the heat flux of the heating surface is fixed,the minimum thermal resistance corresponds to the minimum average temperature of the heating surface.The entropy optimization is also given for the heat transfer processes.It is observed that the minimum entropy generation,the minimum entropy generation number,and the minimum revised entropy generation number do not always correspond to the best heat transfer performance.In addition,the influence factors on the optimized aspect ratio of the plate fin are also discussed.The optimized ratio decreases with the enhancement of heat convection,while it increases with fin thermal conductivity increasing.  相似文献   

5.
直接冷却高温超导电流引线的有限时间热力学分析   总被引:2,自引:1,他引:1  
用有限时间热力学最小熵产率的方法对连续冷却电流引线进行优化 ,比较高温超导电流引线连续冷却和冷端冷却两种直接冷却方式。优化后的连续冷却电流引线上热流量随温度的降低而减小 ,温度在高温段变化较快 ,熵产率小。冷端冷却时在整个引线上热流量分布相同 ,温度在低温端变化较明显 ,熵产率较大。优化后的连续冷却方式比冷端冷却方式合理。  相似文献   

6.
The statistical behaviours of different entropy generation mechanisms in the head-on interaction of turbulent premixed flames with a chemically inert wall within turbulent boundary layers have been analysed using Direct Numerical Simulation data. The entropy generation characteristics in the case of head-on premixed flame interaction with an isothermal wall is compared to that for an adiabatic wall. It has been found that entropy generation due to chemical reaction, thermal diffusion and molecular mixing remain comparable when the flame is away from the wall for both wall boundary conditions. However, the wall boundary condition affects the entropy generation during flame-wall interaction. In the case of isothermal wall, the entropy generation due to chemical reaction vanishes because of flame quenching and the entropy generation due to thermal diffusion becomes the leading entropy generator at the wall. By contrast, the entropy generation due to thermal diffusion and molecular mixing decrease at the adiabatic wall because of the vanishing wall-normal components of the gradients of temperature and species mass/mole fractions. These differences have significant effects on the overall entropy generation rate during flame-wall interaction, which suggest that combustor wall cooling needs to be optimized from the point of view of structural integrity and thermodynamic irreversibility.  相似文献   

7.
We study deviations from thermal equilibrium between two-level systems (TLS) and a bath by frequent and brief quantum measurements of the TLS energy-states. The resulting entropy and temperature of both the system and the bath are found to be completely determined by the measurement rate, and unrelated to what is expected by standard thermodynamical rules that hold for Markovian baths. These anomalies allow for very fast control heating, cooling and state-purification (entropy reduction) of quantum systems much sooner than their thermal equilibration time.  相似文献   

8.
Laser pulse heating of solid surface and entropy generation during the heating process are considered. Time exponentially decaying pulse is accommodated in the analysis and the laser pulse parameter (β1/β2) resulting in minimum entropy generation rate is computed. Analytical solutions for temperature rise are presented and volumetric entropy generation rate is formulated. Two laser pulses resulting in low volumetric entropy generation rate are examined in detail and volumetric entropy generation rate is associated with the laser pulse parameter (β1/β2). It is found that volumetric entropy generation rate attains high values in the early heating period due to large (1/T2). Moreover, the laser pulse with high-peak intensity results in lower volumetric entropy generation rate than that corresponding to the low-intensity laser pulse with the same energy content.  相似文献   

9.
低品位烟气余热回收过程存在冷凝现象,烟气的放热过程分为显热、潜热两部分。冷凝时,局部热流率和熵产率明显增大;增加水蒸气质量分数、冷却水质量流量和降低烟气入口温度都会导致烟气提前冷凝;存在最优冷却水质量流量使得热回收过程熵产数最小。另外,提出热回收效率评价烟气热回收程度,该指标受冷凝的影响很大。随着烟气中蒸汽质量分数的增加,冷凝过程的影响明显增强,因此,在低品位烟气的全热回收中必须考虑潜热的影响。  相似文献   

10.
从热力学观点讨论了工作温度对于制冷循环系统性能的影响。分析了与循环时间有关的温度效率和熵产数。对于一个相对较短的循环时间,吸收/解吸收热量转换器的温度效率在200秒后可以达到92%。熵产数Ns由在一个循环系统内生成的不可逆性参数和热量转换器流体有效性参数之间的比率决定。结果显示,在使用一个30℃冷源的情况下高级吸收式循环系统的熵产数Ns在热水温度是45℃至55℃之间时是相对较小的,而对于传统循环,在使用相同冷源温度的情况下,热水温度在65℃到75℃之间时,Ns是相对较小的。  相似文献   

11.
随着微电子技术向小型化集成化及高频高速方向发展,计算机芯片集成度的提高受到因电子元器件发热而引起的热障所限制,芯片冷却问题成为影响计算机进一步发展的关键因素之一。介绍了电子芯片发展的现状及主要冷却方法的发展,从冷却驱动器件、微通道结构各个角度论述了微流体技术在电子芯片冷却中的重要作用,重点介绍了微槽道冷却和微喷冷却的微流体技术特征,论述了压电泵、电渗、热管等微流体驱动技术在冷却液驱动的应用。  相似文献   

12.
In this communication, an optimization of entropy generation is performed through thermodynamics second law. Tangent hyperbolic nanomaterial model is used which describes the important slip mechanism namely Brownian and thermophoresis diffusions. MHD fluid is considered. The novel binary chemical reaction model is implemented to characterize the impact of activation energy. Nonlinear mixed convection, dissipation and Joule heating are considered. Appropriate similarity transformations are implemented to get the required coupled ODEs system. The obtained system is tackled for series solutions by homotopy method. Graphs are constructed to analyze the impact of different flow parameters on entropy number, nanoparticle volume concentration, temperature and velocity fields. Total entropy generation rate is calculated via various flow variables. It is noticed from obtained results that entropy number depend up thermal irreversibility, viscous dissipation and Joule heating irreversibility and concentration irreversibility. Decreasing behavior of concentration is witnessed for higher estimations of chemical reaction variable. Entropy number is more for higher Hartmann number, Weissenberg number and chemical reaction variable while contrast behavior is noted for Bejan number.  相似文献   

13.
Electron cooling is used for improving the parameters of ion beams. The cooling efficiency depends drastically on the space charge fluctuation intensity in the beam. The fluctuations present in the cooling region cause the stochastic heating of the ions, which adversely affects the cooling efficiency and may even annihilate the ion beam. The space charge fluctuation intensity as a function of various operating parameters of a cooler is studied experimentally. A mechanism of fluctuation generation is suggested, and the effect of fluctuations on the ion beam parameters is estimated.  相似文献   

14.
The analysis under the second law of thermodynamics is the gateway for optimisation in thermal equipments and systems. Through entropy minimisation techniques it is possible to increase the efficiency and overall performance of all kinds of thermal systems. Radiation, being the dominant mechanism of heat transfer in high-temperature systems, plays a determinant role in entropy generation within such equipments. Turbulence is also known to be a major player in the phenomenon of entropy generation. Therefore, turbulence-radiation interaction is expected to have a determinant effect on entropy generation. However, this is a subject that has not been dealt with so far, at least to the extent of the authors’ knowledge. The present work attempts to fill that void, by studying the effect of turbulence-radiation interaction on entropy generation. All calculations are approached in such a way as to make them totally compatible with standard engineering methods for radiative heat transfer, namely the discrete ordinates method. It was found that turbulence-radiation interaction does not significantly change the spatial pattern of entropy generation, or heat transfer, but does change significantly their magnitude, in a way approximately proportional to the square of the intensity of turbulence.  相似文献   

15.
Main emphasis of present work is to analyze the novel feature of entropy generation in MHD nanomaterial flow between two rotating disks. Heat transfer process is explored in the presence of Joule heating and thermal radiation. Tiwari–Das nanofluid model is employed in mathematical modeling. Aluminum oxide and copper water nanoparticles are accounted. Statistical declaration and probable error for problem accuracy are computed. Total entropy generation subject to Bejan number is scrutinized. Suitable variables are utilized to transform nonlinear PDEs to ordinary ones. Convergent series solutions are computed. Zeroth and mth order problems are discussed for stability analysis. The impact of physical flow variables like Reynolds number, magnetic parameter, porosity parameter, stretching parameter, rotational parameter, radiation parameter, Eckert number, suction injection parameter, Brinkman number and temperature ratio parameter on velocities, temperature, total entropy generation and Bejan number are examined and discussed through graphs. Velocity and thermal gradients at the surface of disks are computed.  相似文献   

16.
陈湘  陈云贵  唐永柏  肖定全  李道华 《物理学报》2014,63(14):147502-147502
由于一级相变磁制冷材料发生磁相变时有晶胞体积的突变,相变过程中有相变潜热存在,其磁化过程中有许多磁学问题有待于进一步探究.本文以LaFe13-xSix合金为研究对象,在现有对磁一级相变基础问题的分析基础上,对一级相变材料中系统熵变、等温熵变、绝热温变、热滞、磁滞、铁磁与顺磁态两相共存的温度区间和磁场区间、制冷能力的计算等磁学基础问题进行了较为细致的探究.分析表明,在忽略完全铁磁态和顺磁态对磁热效应的贡献时,Maxwell方程和Clausius-Clapeyron方程计算熵变的值具有等效性.等温磁化过程中升温和降温曲线包围的面积SABCE(磁滞的大小),实际上是升温过程和降温过程中磁场做的净功,等于相变潜热之差.磁滞和热滞的大小与磁化过程数据测量的时间有关,测量时间越长则滞后越小,当相变是平衡相变则滞后为零.另外,对温度和磁场诱导磁相变过程进行了分析,提出了一级相变磁制冷材料制冷能力的不同计算模型.本文对一级相变磁制冷材料的磁学基础问题研究有一定的参考价值.  相似文献   

17.
薄片激光介质分区域主动冷却方法   总被引:1,自引:1,他引:0       下载免费PDF全文
针对高功率、大口径薄片激光器,提出了采用半导体制冷片阵列对薄片激光介质进行分区域主动冷却的方法,通过调节各单元半导体制冷片的工作电压,改变阵列的冷却效率分布,实现了对薄片激光介质的局部温度的控制,进而使得薄片介质的横向温度分布均匀,降低了热效应的影响,为薄片激光器的冷却设计提供了新思路,并通过实验验证了该方法的可行性。  相似文献   

18.
This research presents the applications of entropy generation phenomenon in incompressible flow of Jeffrey nanofluid in the presence of distinct thermal features. The novel aspects of various features, such as Joule heating, porous medium, dissipation features, and radiative mechanism are addressed. In order to improve thermal transportation systems based on nanomaterials, convective boundary conditions are introduced. The thermal viscoelastic nanofluid model is expressed in terms of differential equations. The problem is presented via nonlinear differential equations for which analytical expressions are obtained by using the homotopy analysis method (HAM). The accuracy of solution is ensured. The effective outcomes of all physical parameters associated with the flow model are carefully examined and underlined through various curves. The observations summarized from current analysis reveal that the presence of a permeability parameter offers resistance to the flow. A monotonic decrement in local Nusselt number is noted with Hartmann number and Prandtl number. Moreover, entropy generation and Bejan number increases with radiation parameter and fluid parameter.  相似文献   

19.
本文在深入分析燃煤电站CO2捕获和汽水系统热平衡的基础上,提出一种新型燃煤发电-CO2捕获-供热一体化系统。该系统通过汽水流程、碳捕获流程及地暖供热流程的有效集成,实现了系统中、低温余热的高效利用,降低了碳捕获对电厂效率的影响。分析结果显示,本文提出的一体化系统,在CO2回收率90%时,供电效率可达31.32%,供电效率降低8.96%,而传统化学吸收法碳捕获电站效率惩罚普遍在10~12个百分点或更高。同时,该系统可供热350 MW,全厂(火用)效率达34.49%,全厂热效率高达55.88%;该系统以较少的能耗代价实现高效供电、供热与CO2减排,为燃煤发电机组碳减排提供了独特的学术思路与技术方案。  相似文献   

20.
In this paper, the entropy generation of a flow through a movable plate with variable temperature is studied.Suitable similarity variables are applied to transform the local entropy generation rate to entropy generation number.A modified differential transform method(DTM) with shooting method is used to obtain the similarity solution of the entropy generation. The effects of different parameters(Prandtl number, variable wall temperature) on the irreversibility(such as N_(sh), N_(sf), N_(sx)) are analyzed and discussed. Moreover, it is worth mentioning that DTM is of advantage because its numerical solution is differentiation and integration. Therefore, its analysis result is reliable and high accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号