首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alexei A. Koshkin 《Tetrahedron》2006,62(25):5962-5972
The method for scaled-up production of α-l-LNA phosphoramidite building blocks containing thymine and 5-methylcytosine nucleobases is described. Binding properties of pyrimidine TFOs modified with α-l-LNA are reported. In contrast to LNA TFOs, the fully modified α-l-LNA forms a stable triplex with a model DNA duplex. Pyrimidine DNA/LNA/α-l-LNA chimeras also efficiently hybridize with a model DNA duplex in the parallel mode. LNA nucleoside containing unnatural N7-glycosylated guanine (LNA-7G) was synthesized by a convergent method and incorporated into LNA oligonucleotides. The triplex-forming alternating DNA/LNA oligonucleotides containing a single LNA-7G modification instead of internal LNA-mC demonstrate improved pH-dependent properties. The single LNA-7G modification can also discriminatively reduce competitive binding of TFOs to natural nucleic acids in the antiparallel duplex mode.  相似文献   

2.
Nucleotides that contain two nucleobases (double-headed nucleotides) have the potential to condense the information of two separate nucleotides into one. This presupposes that both bases must successfully pair with a cognate strand. Here, double-headed nucleotides that feature cytosine, guanine, thymine, adenine, hypoxanthine, and diaminopurine linked to the C2′-position of an arabinose scaffold were developed and examined in full detail. These monomeric units were efficiently prepared by convergent synthesis and incorporated into DNA oligonucleotides by means of the automated phosphoramidite method. Their pairing efficiency was assessed by UV-based melting-temperature analysis in several contexts and extensive molecular dynamics studies. Altogether, the results show that these double-headed nucleotides have a well-defined structure and invariably behave as functional dinucleotide mimics in DNA duplexes.  相似文献   

3.
The novel bridged nucleic-acid analogue 2',4'-BNA(NC) (2'-O,4'-C-aminomethylene bridged nucleic acid), containing a six-membered bridged structure with an N-O linkage, was designed and synthesized efficiently, demonstrating a one-pot intramolecular NC bond-forming key reaction to construct a perhydro-1,2-oxazine ring (11 and 12). Three monomers of 2',4'-BNA(NC) (2',4'-BNA(NC)[NH], [NMe], and [NBn]) were synthesized and incorporated into oligonucleotides, and their properties were investigated and compared with those of 2',4'-BNA (LNA)-modified oligonucleotides. Compared to 2',4'-BNA (LNA)-modified oligonucleotides, 2',4'-BNA(NC) congeners were found to possess: (i) equal or higher binding affinity against an RNA complement with excellent single-mismatch discriminating power, (ii) much better RNA selective binding, (iii) stronger and more sequence selective triplex-forming characters, and (iv) immensely higher nuclease resistance, even higher than the S(p)-phosphorthioate analogue. 2',4'-BNA(NC)-modified oligonucleotides with these excellent profiles show great promise for applications in antisense and antigene technologies.  相似文献   

4.
9-Mer DNA sequences containing 2'-N-methyl-2'-N-(pyren-1-ylmethyl)-2'-amino-DNA monomers display significantly increased affinity towards DNA complements whereas the corresponding 2'-amino-DNA monomer has a detrimental effect on duplex stability. These effects are efficiently reversed by incorporation of four LNA nucleotides inducing a B-DNA to A-DNA conformational change.  相似文献   

5.
Möhrle BP  Kumpf M  Gauglitz G 《The Analyst》2005,130(12):1634-1638
Locked nucleic acid (LNA) is a nucleic acid analogue containing 2'-O,4'-C-methylene-beta-D-ribofuranosyl nucleotides, which have a bicyclic furanose unit locked in a RNA mimicking sugar conformation. Oligonucleotides containing LNA monomers show an enhanced thermal stability and robustness against nuclease mediated cleavage. Therefore special tailored LNA is a versatile tool for gene array analysis and single nucleotide polymorphism (SNP) analysis. The higher melting temperatures result from a higher affinity between the LNA and its complementary base. This was verified by the determination of the affinity constants of the duplex formation of 3 oligonucleotides: DNA, L-DNA, in which all thymidines are substituted by LNA, and a fully modified LNA, to their complementary DNA strand. Affinity constants were calculated to be 1.5 x 10(9), 4.0 x 10(9) and >10(12) L mol(-1). This was done using the label free and time resolved sensing technology reflectometric interference spectroscopy (RIfS), in an assay format similar to a titration called binding inhibition assay.  相似文献   

6.
Novel Oligodeoxynucleotide analogues containing 3′-C-threo-methylene phosphodiester internucleoside linkages were synthesized on automated DNA-synthesizers using the phosphoramidite approach. The sugar modified phosphoramidite building block 5 was obtained by phosphitylation of 1-(2,3-dideoxy-5-O-(4,4′-dimethoxytrityl)-3-C-hydroxymethyl-β-D-threo-pentofuranosyl)thymine (4) which was synthesized in only three steps from 5′-O-(4,4′-dimethoxytrityl)thymidine (1). The hybridization properties and enzymatic stability of the oligonucleotide analogues were studied by UV experiments. 17-Mers having one or three modifications in the middle or two modifications in each end hybridized to DNA with moderate lowered affinity compared to unmodified 17-mers (ΔTm 1–3°C per modification). Furthermore, the end-modified and all-modified oligonucleotides were stable towards snake venom phosphodiesterase.  相似文献   

7.
[reaction: see text] 6-(Thiazolyl-5)benzimidazole (B(t)()) was designed as a novel nucleobase for the specific recognition of an inverted A.T base pair in a triple helix motif. It was successfully incorporated into an 18-mer triplex-forming oligonucleotide (TFO) using the 2'-deoxy-C-nucleoside phosphoramidite 16. The triple helix binding properties of the modified TFO were examined by means of thermal denaturation experiments targeting an oligopyrimidine.oligopurine 26-mer DNA duplex containing an A.T base pair inversion.  相似文献   

8.
A novel efficient method for the synthesis of locked nucleic acid (LNA) monomers is described. The LNA 5',3'-diols containing thymine, 4-N-acetyl- and 4-N-benzoylcytosine, 6-N-benzoyladenine, and 2-N-isobutyrylguanine as nucleobases were prepared via convergent syntheses. The method is based on the use of the common sugar intermediate 1,2-di-O-acetyl-3-O-benzyl-4-C-methanesulfonoxymethyl-5-O-methanesulfonyl-D-erythro-pentofuranose (8) that easily can be prepared from D-glucose in multigram scale. Four different nucleobases were stereoselectively coupled to 8 using a modified Vorbrüggen procedure to give the corresponding 4'-C-branched nucleoside derivatives. Subsequent ring closing furnished the protected LNA nucleosides. The 5'-O-mesyl groups were efficiently displaced by nucleophilic substitution using sodium benzoate. Saponification of the 5'-benzoates followed by catalytic removal of the 3'-O-benzyl groups afforded the free LNA diols. The exocyclic amino groups of adenosine and cytidine were selectively acylated to give 4-N-acetyl- or 4-N-benzoyl-LNA-C and 6-N-benzoyl-LNA-A. The isobutyryl group of guanine was retained during the preparation of 2-N-isobutyryl-LNA-G. The LNA-T diol and base-protected LNA diols can be directly converted into LNA-phosphoramidites for automated chemical synthesis of LNA containing oligonucleotides.  相似文献   

9.
Locked nucleic acids (LNAs) containing one or more 2'-O,4'-C-methylene-linked bicyclic ribonucleoside monomers possess a number of the prerequisites of an effective antisense oligonucleotide, e.g. unprecedented helical thermostability when hybridized with cognate RNA and DNA. To acquire a detailed understanding of the structural features of LNA giving rise to its remarkable properties, we have conducted structural studies by use of NMR spectroscopy and now report high-resolution structures of two LNA:RNA hybrids, the LNA strands being d(5'-CTGAT(L)ATGC-3') and d(5'-CT(L)GAT(L)AT(L)GC-3'), respectively, T(L) denoting a modified LNA monomer with a thymine base, along with the unmodified DNA:RNA hybrid. In the structures, the LNA nucleotides are positioned as to partake in base stacking and Watson-Crick base pairing, and with the inclusion of LNA nucleotides, we observe a progressive change in duplex geometry toward an A-like duplex structure. As such, with the inclusion of three LNA nucleotides, the hybrid adopts an almost canonical A-type duplex geometry, and thus it appears that the number of modifications has reached a saturation level with respect to structural changes, and that further incorporations would furnish only minute changes in the duplex structure. We attempt to rationalize the conformational steering induced by the LNA nucleotides by suggesting that the change in electronic density at the brim of the minor groove, introduced by the LNA modification, is causing an alteration of the pseudorotational profile of the 3'-flanking nucleotide, thus shifting this sugar equilibrium toward N-type conformation.  相似文献   

10.
The chemical synthesis of a fully protected ribonucleoside phosphoramidite, containing 2-aminopurine as the base component, and its incorporation into short oligoribonucleotides as substrates for an engineered ribozyme from Tetrahymena is described.  相似文献   

11.
A single-chain antibody specific for the pyrimidine(6-4)pyrimidone photoproduct in DNA was constructed and its binding properties to the cognate oligonucleotides were investigated. The fluorescent property of 2-aminopurine was used to study the binding mode of the antibody fragment to the pyrimidine(6-4)pyrimidone photoproduct in double-stranded DNA. The results indicated that the single-chain antibody recognizes the lesion in the single-stranded state.  相似文献   

12.
Fapy.dG (N(6)()-(2-deoxy-alpha,beta-d-erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine) is a modified purine lesion produced by a variety of DNA-damaging agents, which shows interesting biochemical properties. The previous method for synthesizing oligonucleotides containing Fapy.dG utilized a reverse dinucleotide phosphoramidite, which also required the synthesis of the appropriate reverse phosphoramidites. An improved method for synthesizing oligonucleotides containing Fapy.dG, which does not require reverse phosphoramidites, is described. Fapy.dG containing dinucleotide phosphoramidites containing 5'-thymidine (11a) or 5'-deoxycytidine (15) are prepared and employed in oligonucleotide synthesis. Oligonucleotide purity is assayed using the DNA repair enzyme formamidopyrimidine DNA glycosylase and by ESI-MS.  相似文献   

13.
We have used NMR and CD spectroscopy to study the conformations of modified oligonucleotides (locked nucleic acid, LNA) containing a conformationally restricted nucleotide (T(L)) with a 2'-O,4'-C-methylene bridge. We have investigated two LNA:RNA duplexes, d(CTGAT(L)ATGC):r(GCAUAUCAG) and d(CT(L)GAT(L)AT(L)GC):r(GCAUAUCAG), along with the unmodified DNA:RNA reference duplex. Increases in the melting temperatures of +9.6 degrees C and +8.1 degrees C per modification relative to the unmodified duplex were observed for these two LNA:RNA sequences. The three duplexes all adopt right-handed helix conformations and form normal Watson-Crick base pairs with all the bases in the anti conformation. Sugar conformations were determined from measurements of scalar coupling constants in the sugar rings and distance information derived from 1H-1H NOE measurements; all the sugars in the RNA strands of the three duplexes adopt an N-type conformation (A-type structure), whereas the sugars in the DNA strands change from an equilibrium between S- and N-type conformations in the unmodified duplex towards more of the N-type conformation when modified nucleotides are introduced. The presence of three modified T(L) nucleotides induces drastic conformational shifts of the remaining unmodified nucleotides of the DNA strand, changing all the sugar conformations except those of the terminal sugars to the N type. The CD spectra of the three duplexes confirm the structural changes described above. On the basis of the results reported herein, we suggest that the observed conformational changes can be used to tune LNA:RNA duplexes into substrates for RNase H: Partly modified LNA:RNA duplexes may adopt a duplex structure between the standard A and B types, thereby making the RNA strand amenable to RNase H-mediated degradation.  相似文献   

14.
Artificial nucleic acids are widely used in various technologies, such as nucleic acid therapeutics and DNA nanotechnologies requiring excellent duplex-forming abilities and enhanced nuclease resistance. 2′-O,4′-C-Methylene-bridged nucleic acid/locked nucleic acid (2′,4′-BNA/LNA) with 1,3-diaza-2-oxophenoxazine (BNAP ( BH )) was previously reported. Herein, a novel BH analogue, 2′,4′-BNA/LNA with 9-(2-aminoethoxy)-1,3-diaza-2-oxophenoxazine (G-clamp), named BNAP-AEO ( BAEO ), was designed. The BAEO nucleoside was successfully synthesized and incorporated into oligodeoxynucleotides (ODNs). ODNs containing BAEO possessed up to 104-, 152-, and 11-fold higher binding affinities for complementary (c) RNA than those of ODNs containing 2′-deoxycytidine ( C ), 2′,4′-BNA/LNA with 5-methylcytosine ( L ), or 2′-deoxyribonucleoside with G-clamp ( PAEO ), respectively. Moreover, duplexes formed by ODN bearing BAEO with cDNA and cRNA were thermally stable, even under molecular crowding conditions induced by the addition of polyethylene glycol. Furthermore, ODN bearing BAEO was more resistant to 3′-exonuclease than ODNs with phosphorothioate linkages.  相似文献   

15.
The first synthesis of oligonucleotides containing 4'-selenium-modified ribonucleotides (4'-Se-rN) is described. Four sequences containing 4'-Se-rT were successfully synthesized and compared with DNA and RNA oligonucleotides containing a dT, rT, or LNA insert in place of the 4'-Se-rT. The 4'-Se-rT behaved more like rT than dT in its effects on binding affinity, despite the DNA-like structure previously observed for the nucleoside, suggesting that a conformational switch occurs upon incorporation into an oligonucleotide. Incorporation of 4'-Se-rT into A-RNA and hybrid duplexes led to increased binding affinity, while incorporation into B-DNA destabilized the duplex to the same extent as an rT nucleotide.  相似文献   

16.
Oligonucleotides containing 2'-deoxyisoguanosine (1, iG(d)), 7-deaza-2'-deoxyisoguanosine (2, c(7)iG(d)), and its 7-halogenated derivatives 3 and 4 were synthesized on solid phase using the phosphoramidite building blocks 5-7. The hybridization properties of oligonucleotides were studied on duplexes with parallel and antiparallel chain orientation. It was found that the 7-halogenated nucleoside analogues 3 and 4 enhance the duplex stability significantly in both parallel (ps) and antiparallel (aps) DNA. Moreover, the halogenated nucleosides shift the tautomeric keto-enol equilibrium strongly toward the keto form, with K(TAUT) [keto]/[enol] approximately 10(4) coming close to that of 2'-deoxyguanosine (10(4)-10(5)), while the nonhalogenated 7-deaza-2'-deoxyisoguanosine 2 shows a K(TAUT) of around 2000 and the enol concentration of 1 is 10% in aqueous solution. Consequently, nucleosides 3 and 4 show a much better mismatch discrimination against dT than compound 1 or 2 in antiparallel as well as in parallel DNA. 3 and 4 are expected to increase the selectivity of base incorporation opposite to isoC(d) in the form of triphosphates or in the polymerase-catalyzed reaction in comparison to 1 or 2.  相似文献   

17.
We report solid-state 17O NMR determination of the 17O NMR tensors for the keto carbonyl oxygen (O6) of guanine in two 17O-enriched guanosine derivatives: [6-17O]guanosine (G1) and 2',3',5'-O-triacetyl-[6-17O]guanosine (G2). In G1.2H2O, guanosine molecules form hydrogen-bonded G-ribbons where the guanine bases are linked by O6...H-N2 and N7...H-N7 hydrogen bonds in a zigzag fashion. In addition, the keto carbonyl oxygen O6 is also weakly hydrogen-bonded to two water molecules of hydration. The experimental 17O NMR tensors determined for the two independent molecules in the asymmetric unit of G1.2H2O are: Molecule A, CQ=7.8+/-0.1 MHz, etaQ=0.45+/-0.05, deltaiso=263+/-2, delta11=460+/-5, delta22=360+/-5, delta33=-30+/-5 ppm; Molecule B, CQ=7.7+/-0.1 MHz, etaQ=0.55+/-0.05, deltaiso=250+/-2, delta11=440+/-5, delta22=340+/-5, delta33=-30+/-5 ppm. In G1/K+ gel, guanosine molecules form extensively stacking G-quartets. In each G-quartet, four guanine bases are linked together by four pairs of O6...H-N1 and N7...H-N2 hydrogen bonds in a cyclic fashion. In addition, each O6 atom is simultaneously coordinated to two K+ ions. For G1/K+ gel, the experimental 17O NMR tensors are: CQ=7.2+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2, delta11=400+/-5, delta22=300+/-5, delta33=-20+/-5 ppm. In the presence of divalent cations such as Sr2+, Ba2+, and Pb2+, G2 molecules form discrete octamers containing two stacking G-quartets and a central metal ion, that is, (G2)4-M2+-(G2)4. In this case, each O6 atom of the G-quartet is coordinated to only one metal ion. For G2/M2+ octamers, the experimental 17O NMR parameters are: Sr2+, CQ=6.8+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm; Ba2+, CQ=7.0+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2 ppm; Pb2+, CQ=7.2+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm. We also perform extensive quantum chemical calculations for the 17O NMR tensors in both G-ribbons and G-quartets. Our results demonstrate that the 17O chemical shift tensor and quadrupole coupling tensor are very sensitive to the presence of hydrogen bonding and ion-carbonyl interactions. Furthermore, the effect from ion-carbonyl interactions is several times stronger than that from hydrogen-bonding interactions. Our results establish a basis for using solid-state 17O NMR as a probe in the study of ion binding in G-quadruplex DNA and ion channel proteins.  相似文献   

18.
Oligonucleotides containing 7-thia-8-oxoguanine represent a new class of molecules in which sulfur replaces the 7-nitrogen of a purine base. The monomeric 7-thia-8-oxoguanine 2'-deoxyribonucleoside (2'-deoxyimmunosine, 4) was prepared by nucleobase anion glycosylation in a regio- and stereoselective way employing 5-{[(di-n-butylamino)methylidene]amino}thiazolo[4,5-d]pyrimidine-2,7(3H,6H)-dione (18) and 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-alpha-d-erythro-pentofuranose (6). The nucleoside was converted into the phosphoramidite and oligonucleotides were prepared by solid-phase synthesis. Oligonucleotide duplexes containing the 4-dC base pair show a similar stability as those containing the dG-dC motif. Thus the sterically demanding sulfur and the additional 8-oxo group are well accommodated in the major groove of DNA. As expected, compound 4 does not form a Hoogsteen pair, as reported for 8-oxo-2'-deoxyguanosine. Compared to 2'-deoxyguanosine, 2'-deoxyimmunosine shows a better mismatch discrimination in Watson-Crick base pairs.  相似文献   

19.
A computational model composed of six nucleobases was used to investigate why hypoxanthine does not yield duplexes of equal stability when paired opposite each of the natural DNA nucleobases. The magnitudes of all nearest-neighbor interactions in a DNA helix were calculated, including hydrogen-bonding, intra- and interstrand stacking interactions, as well as 1-3 intrastrand stacking interactions. Although the stacking interactions in DNA relevant arrangements are significant and account for at least one third of the total stabilization energy in our nucleobase complexes, the trends in the magnitude of the stacking interactions cannot explain the relative experimental melting temperatures previously reported in the literature. Furthermore, although the total hydrogen-bonding interactions explain why hypoxanthine preferentially pairs with cytosine, the experimental trend for the remaining nucleobases (A, T, G) is not explained. In fact, the calculated pairing preference of hypoxanthine matches that determined experimentally only when the sum of all types of nearest-neighbor interactions is considered. This finding highlights a strong correlation between the relative magnitude of the total nucleobase-nucleobase interactions and measured melting temperatures for DNA strands containing hypoxanthine despite the potential role of other factors (including hydration, temperature, sugar-phosphate backbone). By considering a large range of sequence combinations, we reveal that the binding preference of hypoxanthine is strongly dependent on the nucleobase sequence, which may explain the varied ability of hypoxanthine to universally bind to the natural bases. As a result, we propose that future work should closely examine the interplay between the dominant nucleobase-nucleobase interactions and the overall strand stability to fully understand how sequence context affects the universal binding properties of modified bases and to aid the design of new molecules with ambiguous pairing properties.  相似文献   

20.
We have synthesized four conformationally restricted bicyclic 2'-spiro nucleosides via 2'-C-allyl nucleosides as key intermediates. The ribo-configured 2'-spironucleosides 9b and 14b were obtained by a convergent strategy starting from 2-ketofuranose 1 whereas the arabino-configured 2'-spironucleosides 21 and 27 were obtained by a linear strategy with a 2'-ketouridine derivative as starting material. The furanose ring of 9b/14b adopts N-type conformations whereas the furanose ring of 21/27 exists as an N<==>S equilibrium. These compounds showed no anti-HIV-1 activity or cytotoxicity. Incorporation of the four 2'-spironucleosides (as monomers X4 and X5) into oligodeoxynucleotides was accomplished using the phosphoramidite approach on an automated DNA synthesizer. Irrespective of monomeric configuration, hybridization studies revealed that these 2'-spironucleotide monomers (X4 and X5) induce decreased duplex thermostabilities compared with the corresponding DNA:DNA and DNA:RNA duplexes. Molecular modelling indicated that steric constraints are a possible reason for the lowered binding affinities of the modified oligodeoxynucleotides towards complementary single-stranded DNA and single-stranded RNA complements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号