首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The competitive adsorption of fibrinogen (FB) and DPPC at the air/aqueous interface, in phosphate buffer saline at 25 degrees C, was studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. For FB/DPPC mixtures with 750 ppm (0.075 wt%) FB and 1000 ppm (0.10 wt%) DPPC, the tension behavior was found to be similar to that of FB when alone, even with DPPC and FB being at the interface. Thus, FB interferes with adsorption of DPPC and inhibits its surface tension lowering ability. When FB protein is introduced in the solution after a DPPC monolayer has formed, the adsorption of FB is inhibited by the DPPC monolayer. When a DPPC monolayer is spread onto a solution with a preadsorbed FB layer, the DPPC monolayer excludes FB from the surface and controls the tension behavior with little inhibition by FB. When a DPPC dispersion is introduced with the Trurnit method, or sprayed dropwise, onto an aqueous FB/DPPC surfaces, the DPPC layer formed on the surface prevents the adsorption of FB and dominates the surface tension behavior. These results have implications in controlling the inhibition of lung surfactant tension behavior by serum proteins, when they leak at the alveolar lining layer, and in developing surfactant replacement therapies for alveolar respiratory diseases.  相似文献   

2.
The adsorption behavior of dipalmitoylphosphatidylcholine (DPPC), which is the major component of lung surfactant, at the air/aqueous interface and the competitive adsorption with bovine serum albumin (BSA) were studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. Dynamic surface tensions lower than 1 mN/m were observed for DPPC dispersions, with mostly vesicles, prepared with new protocols, involving extensive sonication above 50 °C. The lipid adsorbs faster and more extensively for DPPC dispersions with vesicles than with liposomes. For DPPC dispersions by a certain preparation procedure at T > Tc, when lipid particles were observed on the surface, dynamic surface tensions as low as 1 mN/m were measured. Moreover, IRRAS intensities and ellipsometric δΔ values were found to be much higher than the values for other DPPC dispersions or spread DPPC monolayers, suggesting that a larger amount of liposomes or vesicles adsorb on the surface. For DPPC/BSA mixtures, the tension behavior is controlled primarily by BSA, which prevents the formation of a dense DPPC monolayer. When BSA is injected into the subphase with a spread DPPC monolayer or into a DPPC dispersion with preadsorbed layers, little or no BSA adsorbs and the DPPC layer remains on the surface. When a DPPC monolayer is spread on a BSA solution at 0.1 wt% at 25 °C, then DPPC lipid can displace the adsorbed BSA molecules. The lack of BSA adsorption, and the expulsion of BSA by DPPC monolayer is probably due to the strong hydrophilicity of the lipid polar headgroup. When a DPPC dispersion is introduced with Trurnit's method or when dispersion drops are sprayed onto the surface of a DPPC/BSA mixture, the surface tension becomes lower and is controlled by DPPC, which can prevent the adsorption of BSA. The results may be important in understanding inhibition of lung surfactants by serum proteins and in designing efficient protocols of surfactant preparation and administration.  相似文献   

3.
Fibrinogen (FB), a serum protein, is considered a major inhibitor of lung surfactant function at the lining layer of the alveoli. In this study, the adsorption of aqueous bovine FB at the air/water interface was investigated with tensiometry and directly probed for the first time with ellipsometry and infrared reflection adsorption spectroscopy (IRRAS). The tension results show that FB has moderate surface activity. The surface densities of FB were calculated by using two different ellipsometry models to range from 3±0.2 to 17±2 mg/m2, for 7.5 to 750 ppm of FB in water at 25°C. Although FB at concentrations from 75 to 750 ppm reached about the same steady surface tension value, the surface densities at 750 ppm FB were substantially larger. The same techniques were used for studying aqueous mixtures of 7.5 to 750 ppm FB with 2 mM of sodium myristate (SM) to investigate a possible interaction of the SM with the protein. The behavior of the FB/SM mixtures was found to be close to that of SM alone. The surface tension of the FB/SM mixtures reached values less than 10 mN/m under surface area oscillation at 20 or 80 rpm. These results and the ellipsometry and the IRRAS results indicate that at a concentration of 2 mM SM, FB, up to 750 ppm, does not inhibit the surfactant surface-tension-lowering function. In certain cases the results demonstrate that FB and SM may act cooperatively in lowering the surface tension.  相似文献   

4.
In this paper two in situ techniques are combined to simultaneously examine protein adsorption at the solid–liquid interface from sessile solution droplets. With axisymmetric drop shape analysis by profile (ADSA-P) the change in solid–liquid interfacial tension is determined, while ellipsometry is employed to measure the amount of protein adsorbed from the same solution droplet at the solid–liquid interface. Three proteins (human serum albumin (HSA), immunoglobulin G (IgG) and fibrinogen (Fb)) were dissolved to a concentration of 0.05 mg ml−1 in PBS (pH 7) and sessile droplets were placed for 2 h on a 47.8 nm thick gold coating on glass. The gold coated glass was positioned onto a quartz prism with immersion oil. The prism was aligned in a rotating analyser ellipsometer and the optical beam was thus allowed to be reflected at the hydrophobic gold surface. The ADSA-P set-up was built in 90° cross-beamed set-up around the prism. By combining the results for the adsorbed amounts and the interfacial tension changes over the two hour adsorption period, two stages in the adsorption process could be distinguished. In the first stage, the adsorbed amounts increase in correspondence with the interfacial tension changes, indicating that the interfacial tension changes are caused by adsorption, whereas in the second stage interfacial tension changes continue despite the adsorbed amounts being constant. Consequently, the second stage must be associated with conformational changes of the adsorbed proteins. For HSA and Fb, the conformational contribution to the interfacial tension changes (7.8 and 5.3 mJ m−2, respectively) were approximately 2-fold the adsorption contribution, while for IgG both were equal around 3 mJ m−2.  相似文献   

5.
This study investigated the roles of gamma-globulin in the dynamic interfacial behavior of dipalmitoyl phosphatidylcholine (DPPC)/gamma-globulin monolayers at air/liquid interfaces at 25 degrees C. The surface tension behavior demonstrated that gamma-globulin had a large adsorption time scale. Moreover, the surface pressure-area hysteresis behavior of adsorbed gamma-globulin monolayers suggested that no significant desorption occurred during the compression stage, and the respreading of gamma-globulin molecules at the interface during the expansion stage was slow. From the hysteresis behavior of adsorbed gamma-globulin monolayers with spread DPPC molecules, it was found that gamma-globulin molecules were expelled from the interface as DPPC molecules were in a condensed state. The squeeze-out of gamma-globulin molecules seemed to induce the loss of DPPC molecules at the interface with the extent depending on the initial gamma-globulin surface concentration. Furthermore, the expelled gamma-globulin molecules re-entered the monolayer and participated in the surface pressure increase during the following expansion stage. The exclusion of gamma-globulin associated with the removal of DPPC during monolayer compression and the re-entry of gamma-globulin during subsequent monolayer expansion represented a mechanism for DPPC depletion and gamma-globulin enrichment at the interface, which may explain the inhibitory effect of certain proteins on the surface activity of DPPC. Copyright 2000 Academic Press.  相似文献   

6.
Adsorption of bovine serum albumin at solid/aqueous interfaces   总被引:3,自引:0,他引:3  
Adsorption of soluble serum proteins on hydrophilic and hydrophobic solid surfaces is important for biomaterials and chromatographic separations of proteins. The adsorption of bovine serum albumin (BSA) from aqueous solutions was studied with in situ ATR-IR spectroscopy, and with ex situ ATR-IR, ellipsometry, and water wettablity measurements. The results were used to quantitatively determine the adsorbed film thickness and surface density of BSA on hydrophilic silicon oxide/silicon surfaces, and on these surfaces covered with a hydrophobic lipid monolayer of dipalmitoylphosphatidylcholine (DPPC). The water contact angles were 5° for silicon oxide, 47° ± 1° for the DDPC monolayer, and 53° ± 1° for the BSA monolayers. At 25 °C, and with 0.01–1 wt% BSA in water, the surface densities range from Γ = 2.6–5.0 mg/m2, and the film thicknesses range from d = 2.0–3.8 nm, on the assumption that the film is as dense as bulk protein. These results, and certain changes in the IR amide I and II bands of the protein, indicate that the protein adsorbs as a side-on monolayer, with some flattening due to unfolding or denaturation. The estimated -helical content for protein in buffer solutions is 15% higher than for solutions in water. The adsorption density reaches a steady-state value within 10 min for the lowest concentration, but does not appear to reach a steady-state value after 3 h f‘or the higher concentrations. Adsorption of BSA on a silicon oxide surface covered with a monolayer of DPPC leads to an adsorbed protein film of about half the thickness and surface density than on silicon oxide, but the same contact angle, indicating more protein unfolding on the hydrophobic than on the hydrophilic surface.  相似文献   

7.
8.
The mixed layer behavior of dipalmitoyl phosphatidylcholine (DPPC) with fibrinogen at continuously compressed-expanded air/liquid interfaces was analyzed in situ by infrared reflection-absorption spectroscopy (IRRAS). The reflectance-absorbance (RA) intensities and/or wavenumbers of nu(a)-CH2 and amide I bands for a mixed DPPC/fibrinogen layer at the interface were obtained directly by an infrared spectrometer with a monolayer/grazing angle accessory and a removable Langmuir trough. The nu(a)-CH2 RA intensity-area hysteresis curves of a DPPC monolayer indicate a significant loss of free DPPC molecules at the interface during the first compression stage, which is also supported by the corresponding nu(a)-CH2 wavenumber-area hysteresis curves. For a mixed DPPC/fibrinogen layer at the interface, the amide I RA intensity-area hysteresis curves suggest that the fibrinogen molecules were expelled from the interface upon compression, apparently because of the presence of insoluble DPPC molecules. The squeeze-out of fibrinogen evidently removed a pronounced amount of DPPC from the interface, as judged from the corresponding nu(a)-CH2 intensity and wavenumber data. Moreover, significant adsorption of fibrinogen was found during the subsequent interface expansion stage. With the in situ IRRAS analysis of the mixed layer behavior at the interface, the induced loss of DPPC by fibrinogen expulsion from the compressed interface and the dominant adsorption of fibrinogen to the expanded interface were clearly demonstrated.  相似文献   

9.
We investigated the interaction between an anionic polyelectrolyte (carboxymethylcellulose) and cationic surfactants (DTAB, TTAB, and CTAB) at the air/water interface, using surface tension, ellipsometry, and Brewster angle microscopy techniques. At low surfactant concentration, a synergistic phenomenon is observed due to the co-adsorption of polyelectrolyte/surfactant complexes at the interface, which decreases the surface tension. When the surfactant critical aggregation concentration (cac) is reached, the adsorption saturates and the thickness of the adsorbed monolayer remains constant until another characteristic surfactant concentration, C0, is reached, at which all the polymer charges are bound to surfactant in bulk. Above C0, the absorbed monolayer becomes much thicker, suggesting adsorption of bulk aggregates, which have become more hydrophobic due to charge neutralization.  相似文献   

10.
Optical techniques play an increasingly important role in the characterization of microstructure and surface densities of thin films at various interfaces. In this study, ellipsometry and infrared reflection absorption spectroscopy (IRRAS) were used for determining the surface densities of adsorbed layers of cationic surfactants in situ at the air-water interface. The surfactants were N(alpha)-lauroyl-arginine methyl ester (LAM) and N(alpha), N(omega)-bis(N(alpha)-lauroyl-arginine)-alpha,omega-alkylidenediamide (C(6)(LA)(2)). In ellipsometry, the ellipsometric phase angle Delta was obtained at various surfactant concentrations and was referenced to that of the solvent. Three algorithms were used for analyzing the data. The surface densities are 3.3+/-0.3x10(-6) mol/m(2) at 1 mM for LAM and 1.5+/-0.3x10(-6) mol/m(2) at 0.1 mM for C(6)(LA)(2) by using an algorithm for which the monolayer thickness was estimated from molecular modeling. The corresponding surface densities from literature surface tension data and the Gibbs adsorption isotherm procedure are 2.2+/-0.4x10(-6) mol/m(2) and 1.2+/-0.2x10(-6) mol/m(2), respectively. In addition, IRRAS spectra were obtained from monolayers of LAM and C(6)(LA)(2) at the air-water interface. The frequencies of the methylene stretching vibration bands indicate that the monolayers are liquid-like. The surface densities were determined from the reflectance-absorbance data by using the model of either an isotropic film or an anisotropic film on the aqueous subphase. The IRRAS-based surface densities from either model, by using DPPC monolayers for calibration, are 2.4+/-0.7x10(-6) mol/m(2) at 1 mM for LAM and 1.5+/-0.6x10(-6) mol/m(2) at 0.1 mM for C(6)(LA)(2), which are in fair agreement with the ellipsometry- and the surface-tension-based surface densities. Copyright 2001 Academic Press.  相似文献   

11.
The surface properties of a series of cholesteryl-pullulan (CHP) derivatives have been assessed by surface tension measurements at the solution-air interface. The results reveal that these properties are related to the nature of the hydrophobic cholesteryl group substituted in pullulan, and that the unsubstituted polysaccharide does not display any surface activity. The adsorption kinetics of such an amphiphilic macromolecule has been shown to be diffusion controlled, obeying the Ward and Tordai¨diffusional model only at low solution concentrations. In the 2 × 10−7–5 × 10−6 mol l−1 concentration range for which this model is verified, the calculated diffusion coefficients are concentration dependent. The non-ideality of the system at higher concentrations may be explained both by the presence of solute/solute interactions in solution and in adsorbed monolayers, and by the existence of an adsorbed layer, even at time t0, which prevents the process of adsorption from being governed only by diffusion.  相似文献   

12.
The measurements of the interfacial tension at the air/aqueous subphase interface as the function of pH were performed. The interfacial tension of the air–aqueous subphase interface was divided into contributions of individuals. A simple model of the influence of pH on the phosphatidylcholine monolayer at the air/hydrophobic chains of phosphatidylcholine is presented. The contributions of additive phosphatidylcholine forms (both interfacial tension values and molecular area values) depend on pH. The interfacial tension values and the molecular areas values for LH+, LOH forms of phosphatidylcholine were calculated. The assumed model was verified experimentally.  相似文献   

13.
Dynamic surface tensiometry, ellipsometry, and infrared reflection-absorption spectroscopy (IRRAS) were used to study the dynamic adsorption and surface tensions of dilauroylphosphatidylcholine (DLPC) in the presence of bovine serum albumin (BSA). Results show that the equilibrium adsorbed layers consist mostly of DLPC, which can produce dynamic surface tensions (1 mN/m) as low as the more successful lung surfactant replacement formulations. When the aqueous surface expands and contracts sinusoidally, BSA can coadsorb and lead to slightly higher dynamic surface tensions than when DLPC is alone. Similar results were obtained with BSA and sodium myristate [McClellan and Franses, Colloids Surf. B 30 (2003) 1]. Expulsion of the BSA in the layer by DLPC can take from 5 to 15 min, depending on relative concentrations and history of solute addition. This is shown by tensiometry measurements on mixtures, and also by injecting aqueous DLPC underneath adsorbed BSA layers and probing the surface layer with ellipsometry and IRRAS. Albumin layers from buffer solutions aged up to 30 h can be expelled by DLPC. In pure water, there is an initial enhancement in protein adsorption after the DLPC is injected. This can be explained by the hypothesis that DLPC molecules bind with BSA molecules to form a hydrophobic lipoprotein complex, which is more hydrophobic than the protein itself. Since DLPC produces lower surface energy than BSA and--being slightly soluble--adsorbs to the surface by a molecular mechanism, it fulfills the thermodynamic and dynamic requirements for expelling the BSA from the surface. The results have implications for minimizing lung surfactant inhibition by serum proteins, as it occurs in the cases of adult or acute respiratory distress syndrome.  相似文献   

14.
The surface tension isotherms for pure oligooxypropylenated piperidine and morpholine at the aqueous solution—air interface were determined and interpreted. The surface excess concentration, Γ, the surface area per molecule, A, and the standard free energy of adsorption, ΔG°, were calculated according to a new empirical adsorption equation. The standard free energy contribution for the oxypropylene group (PO) in morpholine derivatives,ΔG° (PO) = −3.34 kJ mol−1, is substantially lower than that for the PO group located in the piperidine derivatives, i.e. ΔG° (PO)= −3.12 kJ mol−1.  相似文献   

15.
The adsorption affinity of bovine serum albumin (BSA) and lysozyme (LSZ) to calcium hydroxyapatite (CaHAP) was evaluated by desorption and two step adsorption methods. These experiments were carried out at 15°C in a 1×10−4 mol dm−3 KCl solution of pH 6.0. BSA molecules were scarcely desorbed, exhibiting an irreversible adsorption of BSA, though LSZ slightly desorbed. This result supports our previous findings that LSZ adsorbs weakly onto phosphate ions exposed on ac or bc faces of CaHAP while BSA adsorbs strongly onto positively charged sites on ac or bc faces of CaHAP. The amount of adsorbed LSZ was markedly increased by the pre-adsorption of BSA, where LSZ was adsorbed onto BSA-covered CaHAP. On the other hand, the amount of adsorbed BSA was not changed by the pre-adsorption of LSZ. In both pre-adsorption systems it was confirmed by an HPLC method that no protein molecule pre-adsorbed was desorbed after the post-adsorption procedure. Therefore, it was interpreted that the enhancement of adsorption of positively charged LSZ is induced by an electrostatic attractive force through pre-adsorption of negatively charged BSA molecules with a high coverage. However, since the coverage of LSZ onto CaHAP is considerably low, no stimulation of BSA adsorption occurred on the LSZ-covered surface. The formation of double protein adsorbed layers consisting of pre- and post-adsorbed proteins was proposed.  相似文献   

16.
The interfacial tensions of mixed α-dipalmitoylphosphatidylcholine (DPPC)/β-lactoglobulin layers at the chloroform/water interface have been measured by the pendent drop and drop volume techniques. In certain intervals, the adsorption kinetics of these mixed layers was strongly influenced by the concentrations of both protein and DPPC. However, at low protein concentration, Cβ-lactoglobulin=0.1 mg l−1, the adsorption rate of mixed interfacial layers was mainly controlled by the variation of the DPPC concentration. As Cβ-lactoglobulin was increased to 0.8 mg l−1, the interfacial activity was abruptly increased, and within the concentration range of CDPPC=10−4–10−5 mol l−1, the DPPC has very little effect on the whole adsorption process. In this case, the adsorption rate of mixed layers was mainly dominated by the protein adsorption. This phenomenon also happened as the protein concentration was further increased to 3.6 mg l−1. When CDPPC>3 · 10–5 mol l−1, the adsorption behaviour was very similar to that of the pure DPPC although the protein concentration was changed. The equilibrium interfacial tensions of the mixed layers are dramatically effected by the lipid as compared to the pure protein adsorption at the same concentration. It reveals the estimation of which composition of lipid and protein decreases the interfacial tension. The combination of Brewster angle microscopy (BAM) with a conventional LB trough was applied to investigate the morphology of the mixed DPPC/β-lactoglobulin layers at the air/water interface. The mixed insoluble monolayers were produced by spreading the lipid at the water surface and the protein adsorbed from the aqueous buffer subphase. The BAM images allow to visualise the protein penetration and distribution into the DPPC monolayer on compression of the complex film. It is shown that a homogeneous distribution of β-lactoglobulin in lipid layers preferentially happens in the liquid fluid state of the monolayer while the protein can be squeezed out at higher surface pressures.  相似文献   

17.
The influence of tyloxapol on the dynamic surface tension response of dipalmitoyl phosphatidylcholine (DPPC) dispersions at pulsating air/liquid interfaces was investigated. For a 1000 ppm DPPC dispersion prepared by sonication with a larger particle size, the dynamic surface activity of DPPC was strongly affected by the addition of 100 ppm tyloxapol. With a longer sonication time or smaller particle size, the DPPC inactivation was still observed but was somewhat less significant, resulting in slightly lower dynamic surface tensions. If a DPPC dispersion was sonicated in the presence of tyloxapol, the particle size of DPPC was greatly reduced by tyloxapol and the inhibitory effect of tyloxapol on the dynamic adsorption of DPPC may be significantly diminished. The results suggest that the competitive adsorption of tyloxapol may have a detrimental effect on the dynamic surface tension lowering ability of a DPPC dispersion with the extent depending on the DPPC dispersion state. Nevertheless, the dynamic surface activity of DPPC may be enhanced through the improved dispersion by tyloxapol if an appropriate preparation protocol is applied, and the inhibitory effect of tyloxapol may be reduced or overcome. Copyright 2001 Academic Press.  相似文献   

18.
The adsorption of bovine serum albumin (BSA) onto an anionic monolayer of sodium docosylsulfate (SDocS) spread at the air/water interface was studied by ellipsometry. The adsorption behavior of BSA was estimated from the observed changes in phase differences and in the ratio of reflection coefficients. The dynamic process of BSA adsorption was measured after the injection of BSA solution into the aqueous substrate of SDocS monolayer. The gentle stirring of the substrate solution for 10 min was found to be enough to make the solution homogeneous without damaging the monolayer. The adsorption characteristics of BSA onto a negatively charged surface was compared with that onto a positively charged surface previously reported.The amount of adsorption depended on time and showed a maximum with an initial rapid rise, followed by gradual decrease toward the ultimate equilibrium value. The amount and time of the maximum adsorption depended on the concentration of BSA added to the aqueous substrate.Separate radiotracer measurement, using35S-labeled SDocS monolayer, which is insoluble by itself, revealed that SDocS is solubilized into the bulk solution when BSA is added to the aqueous substrate.  相似文献   

19.
The adsorption of bovine serum albumin (BSA) onto a cationic monolayer (N,N-dimethyl-N,N-dialkylammonium chloride) spread at the air/water interface was studied by ellipsometry. Both thicknesses and refractive indices of the BSA layer adsorbed at the monolayer/solution interface are estimated from the observed change in phase difference and the ratio of reflection coefficients. The amount of adsorption of BSA resembles a Langmuir type isotherm. The adsorption changes with pH asymmetrically with respect to the pH of maximum adsorption, which was calculated to be 5.06 ± 0.47 mg/m2. The amount of maximum adsorption implies that the BSA molecule adsorbs to the surface in a mode intermediate between side-on and end-on.  相似文献   

20.
The dynamic surface tension and equilibrium adsorption behavior of DLPC dispersions in phosphate buffer saline at 37 and 25 degrees C was studied with tensiometry, infrared reflection--absorption spectroscopy (IRRAS), and ellipsometry. The results are compared with those in water (Pinazo et al. Langmuir 2002, 18, 8888). Even though the pH and salinity have no apparent effect on the equilibrium surface tension and the surface pressure--area isotherm, they affect the dynamic surface tension by decreasing the adsorption rate and increasing the dynamic tension minima at a pulsating area of 20 or 80 cycles per minute. Moreover, IRRAS and ellipsometry results show that the adsorbed layers and the spread monolayers have larger area per molecule, or looser packing, in buffer than in water. A new hypothesis is proposed to elucidate the effect of pH/salinity on this zwitterionic surfactant: there is some specific interaction or binding between the ions from the buffer saline with the polar headgroups of DLPC. This interaction induces stronger intermolecular repulsions of the surfactant layer in buffer than that in water, despite the expected electrostatic screening effect, and causes higher dynamic surface tensions. The results have implications in designing lung surfactant replacement formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号