首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coherent anti-Stokes Raman spectroscopy (CARS) was used to measure the vibrational temperature of microwave-excited nitrogen in a N2–CO–He mixture. CARS spectra, originating from the N2-vibrational levelsv=0 up tov=3, have been recorded by both narrowband scanning of the resonance region as well as by broadband OSA detection. For the microwave-excited N2 molecules a vibrational temperatureT v (N 2 = (2130±110K) and a lower limit of detection forN 2(v = 3) = 1.2 x 1015 cm–3 was established. The CARS results were independently confirmed by simultaneously recorded and spectrally resolved CO infrared fluorescence studies.  相似文献   

2.
Annealing effect on net acceptor concentration in ZnSe:N is investigated. ZnSe:N homo-epitaxial layer was grown at 823 K by MOCVD using ammonia (NH3) as a dopant source. Photoluminescence (PL) spectra measured on as-grown layer exhibited the strong deep donor–acceptor pair (DdAP) emission and the weak I1N emission line. In order to enhance the activation of nitrogen in ZnSe epitaxial layer, sample was annealed at the 823 K in nitrogen (N2) and hydrogen (H2) atmosphere. Only the annealing in nitrogen atmosphere increased I1N emission intensity indicate the activation of nitrogen acceptor. And net acceptor concentration was estimated to be 3 × 1017cm−3 by CV measurements. This activation mechanism is interpreted as hydrogen is released from N–H bonds during annealing in nitrogen atmosphere.  相似文献   

3.
GaN has been grown using Si/N treatment growth by MOVPE on sapphire (0001) in a home-made vertical reactor. The growth was monitored by in situ laser reflectometry. The morphological, electrical and optical properties of GaN are investigated at all the growth stages. To this aim, the growth was interrupted at different stages. The obtained samples are ex situ characterized by scanning electron microscopy (SEM), room temperature Van der Pauw–Hall electrical transport and low temperature (13 K) photoluminescence (PL) measurements. The SEM images show clearly the coalescence process. A smooth surface is obtained for a fully coalesced layer. During the coalescence process, the electron concentration (n) and mobility (μ) vary from 2×1019 cm−3 to 2×1017 cm−3 and 12 cm2/V s–440 cm2/V s, respectively. The PL maxima shift to higher energy and the FWHM decreases to about 4 meV. A correlation between PL spectra and Hall effect measurements is made. We show that the FWHM follows a n2/3 power law for n above 1018 cm−3.  相似文献   

4.
The half-width of the spectrum of Raman scattering (RS) of the first order of a diamond single crystal grown in a nickel-free system containing nitrogen getters is identical to all growth sectors (1.69 ± 0.02 cm–1). The sectorial inhomogeneity is not reflected in the transmission spectra and birefringence of this crystal. The nitrogen concentration is 4·1017 cm–3. For different growth sectors of the diamond crystal grown in the Ni–Fe–C system, the half-width of the Raman line varies from 1.74 to 2.08 cm–1, differences in the transmission spectra and birefringence are observed, and photoluminescence is revealed. The concentration of nitrogen in the growth sectors {001} is 1.6·1019 cm–3, the content of nickel is estimated to be at a level of 1019 cm–3, and the content of nitrogen in the {¯111} sectors is 4·1019 cm–3.  相似文献   

5.
Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The 13C and 15N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the 13C CP MAS chemical shifts the 7S alkaloids (δ C3 70–71 ppm) can be easily and conveniently distinguished from 7R (δC3 74.5–74.9 ppm), also 20R (δC20 41.3–41.7 ppm) from the 20S (δC20 36.3–38.3 ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger 15N MAS chemical shift of N4 (64.6 ppm) than the allo-type (3S, 20S) of isopteropodine (δN4 53.3 ppm). 15N MAS chemical shifts of N1–H in pentacyclic alkaloids are within 131.9–140.4 ppm.  相似文献   

6.
The 333.6-, 351.1-, and 363.8-nm lines of a cw argon ion laser are found to coincide with the BaS B1Σ+-X1Σ+ (12, 0) R(17), (6, 0) P(35), and (3, 0) R(125) transitions, respectively. Fluorescence transitions from the laser-prepared upper levels terminating in X1Σ+ V = 0–28, A1Σ+ V = 1–3, A1Π V = 1–13, and a3Π1 V = 3–12 are assigned. These results are combined with a previous analysis of the extensively perturbed BaS A1Σ+-X1Σ+ system [R. F. Barrow, W. G. Burton, and P. A. Jones, Trans. Farad. Soc.67, 902–906 (1971)]. Every observed perturbation of the BaS A1Σ+ state is electronically and vibrationally assigned. The levels a3Π0 V = 10–13, a3Π1 V = 12–14, a3Π2 V = 15, and A1Π V = 10–13 are sampled via their perturbations of A1Σ+ V = 0–2. Although the mutual interactions of the a3Π, A1Π, and A1Σ+ states approach Hund's case (c) limit, a complete deperturbation is performed from a case (a) starting point. Of the five lowest energy electronic states of BaS, only b3Σ+ remains uncharacterized. Principal deperturbed molecular constants are (in cm−1, 1σ uncertainties in parentheses):
  相似文献   

7.
The collision broadening and shift of the Hg intercombination spectral line 253.7 nm (61S0–63P1) perturbed by Kr has been investigated using a high-resolution scanning Fabry–Perot interferometer. The values of the pressure broadening and shift coefficients β and δ, respectively, for the studied line have been obtained. The obtained coefficients β and δ are compared with their corresponding published experimental values and also those calculated using Lindholm–Foley impact theory.  相似文献   

8.
Several elementary reactions of formyl radical of combustion importance were studied using pulsed laser photolysis coupled to transient UV–Vis absorption spectroscopy: HCO → H + CO (1), HCO + HCO → products (2), and HCO + CH3 → products (3). One-pass UV absorption, multi-pass UV absorption as well as cavity ring-down spectroscopy in the red spectral region were used to monitor temporal profiles of HCO radical. Reaction (1) was studied over the buffer gas (He) pressure range 0.8–100 bar and the temperature range 498–769 K. Reactions (2a), (2b), (2c), (3a) and (3b) as well as the UV absorption spectrum of HCO, were studied at 298 and 588 K, and the buffer gas (He) pressure of 1 bar. Pulsed laser photolysis (308, 320, and 193 nm) of acetaldehyde, propionaldehyde, and acetone was used to prepare mixtures of free radicals. The second-order rate constant of reaction (1) obtained from the data at 1 bar is: k1(He) = (0.8 ± 0.4) × 10−10exp(−(66.0 ± 3.4) kJ mol−1/RT) cm3 molecule−1 s−1. The HCO dissociation rate constants measured in this work are lower than those reported in the previous direct work. The difference is a factor of 2.2 at the highest temperature of the experiments and a factor of 3.5 at the low end. The experimental data indicate pressure dependence of the rate constant of dissociation of formyl radical 1, which was attributed to the early pressure fall-off expected based on the theory of isolated resonances. The UV absorption spectrum of HCO was revised. The maximum absorption cross-section of HCO is (7.3 ± 1.2) × 10−18 cm2 molecule−1 at 230 nm (temperature independent within the experimental error). The measured rate constants for reactions (2a), (2b), (2c), (3a) and (3b) are: k2 = (3.6 ± 0.8) × 10−11 cm3 molecule−1 s−1 (298 K); k3 = (9.3 ± 2.3) × 10−11 cm3 molecule−1 s−1(298 and 588 K).  相似文献   

9.
The A2Π–X2Σ+ transition of 174Yb35Cl and 172Yb35Cl has been rotationally analyzed for the first time. Doppler-limited laser excitation spectroscopy with selective detection of fluorescence was used to obtain spectra of the 0–0 and 1–0 bands with a measurement accuracy of approximately 0.0035 cm−1. Resolved fluorescence was used to record the 0–1, 0–2, and 0–3 bands and to unequivocally assign the rotational numbering, N, to the laser excitation spectra. In total, over 1300 line positions have been measured and assigned for each of the two isotopomers and employed in least-squares fits of molecular parameters. The principal results for the A2Π state are Ae = 1491.494(2) cm−1 and Re = 2.4433(1) Å, and for the X2Σ+ state, Re = 2.4883(2) Å and γe = 4.59(2) × 10−3 cm−1. The interaction between the X2Σ+ and A2Π states has been investigated and is shown to be the main contributor to the spin–rotation splitting in the ground state.  相似文献   

10.
Near-infrared and visible spectra of the A2Π–X2Σ+, C2Π1/2A2Π1/2, C2Π1/2B2Σ+, and C2Π1/2X2Σ+ band systems of the BaI molecule were recorded by using Fourier transform spectroscopy (FTS). The spectra were produced from the chemiluminescent reaction Ba + I2 and also by using laser-induced fluorescence (LIF) technique in which the laser sources were a Ti:sapphire single-mode laser, a dye single-mode laser, and a Kr+ multimode ion laser. Resolved rotational data, originating from 19 vibrational levels (0 ≤ v ≤ 5 and 7 ≤ v ≤ 19) of the A2Π state, 24 vibrational levels (0 ≤ v ≤ 18 and 20 ≤ v ≤ 24) of the X2Σ+ state, and 8 vibrational levels (1 ≤ v ≤ 2 and 9 ≤ v ≤ 14) of the C2Π state, were used in the final analysis. Previously recorded data for the B2Σ+X2Σ+ and C2Π–X2Σ+ systems, taken from R. F. Gutterres, J. Vergès, and C. Amiot, J. Mol. Spectrosc. 196, 29–44 (1999) and from C. A. Leach, A. A. Tsekouras, and R. N. Zare, J. Mol. Spectrosc. 153, 59–72 (1992), were added to the present work data field. Accurate and improved molecular constants, for the X2Σ+, B2Σ+, A2Π, and C2Π states, were derived from a simultaneous treatment of the whole data set.  相似文献   

11.
Rashba polarization in HgCdTe inversion layers at large depletion charges   总被引:1,自引:0,他引:1  
The Rashba effect in metal–insulator–semiconductor (MIS) structures based on zero-gap HgCdTe is investigated experimentally and theoretically over a wide doping range NAND=3×1015–3×1018 cm−3. Increase of doping enlarges the magnitude of the effect at the same 2D concentration and strengthens a gate-voltage dependence of the Rashba splitting. The results demonstrate values of Rashba polarization as high as PR0.5 and a capability to control the Rashba effect strength at constant electron concentration.  相似文献   

12.
The chelating ligand, 2,4-[bis-(2,4-dihydroxybenzylidene)]-dihydrazinoquinazoline (DBHQ) can form a fluorescence complex with Ga3+ ions. The fluorescence intensity of the obtained DBHQ–Ga3+ complex increases in the presence of some phosphorylated compounds. The addition of phosphorylated serine and tyrosine, pyridoxal-5′-phosphate (PLP), and glucose-6-phosphate (G6P) leads to an increase in the fluorescence quantum yield (φ) of the complex by 1.38–1.59 times, while the addition of serine, tyrosine, pyridoxal, and glucose leads to a small increase in φ (1.02–1.04). This is the first report on the fluorescence enhancement effect of phosphorylated compounds on a Ga3+ ion complex.  相似文献   

13.
The effect of poly-Si thickness on silicidation of Ni film was investigated by using X-ray diffraction, auger electron spectroscopy, cross-sectional scanning transmission electron microscopy, resistivity, IV, and CV measurements. The poly-Si films with various thickness of 30–200 nm were deposited by LPCVD on thermally grown 50 nm thick SiO2, followed by deposition of Ni film right after removing the native oxide. The Ni film was prepared by using atomic layer deposition with a N2-hydroxyhexafluoroisopropyl-N1 (Bis-Ni) precursor. Rapid thermal process was then applied for a formation of fully silicide (FUSI) gate at temperature of 500 °C in N2 ambient during 30 s. The resultant phase of Ni-silicide was strongly dependent on the thickness of poly-Si layer, continuously changing its phase from Ni-rich (Ni3Si2) to Si-rich (NiSi2) with increasing the thickness of the poly-Si layer, which is believed to be responsible for the observed flat band voltage shift, ΔVFB, in CV curves.  相似文献   

14.
The rotational spectra of three isotopomers of the Ar–dimethyl sulfide (DMS) complex – normal, 34S, and 13C species – were measured in the frequency region from 3.7 up to 24.1 GHz by Fourier transform microwave spectroscopy. The normal species yielded 43 a-type and 79 c-type transitions. No Ar tunneling splitting was observed, while many transitions were split by the internal rotation of the two methyl tops of the DMS unit. In cases where the K-type splitting was close to that due to methyl internal-rotation, several forbidden transitions were observed that followed b-type selection rules. All of the observed transition frequencies were analyzed simultaneously using a phenomenological Hamiltonian also used in previously published work describing the Ar–dimethyl ether (DME) and Ne–DME complexes. The rotational and centrifugal distortion constants and the potential barrier height to methyl-top internal rotation, V3, were determined. The rotational constants were consistent with an Ar–DMS center of mass (cm) distance of 3.796 (3) Å and a S–cm–Ar angle of 104.8 (2)°. The V3 potential barrier obtained, 736.17 (32) cm−1, was 97.8% of the DMS monomer barrier. By assuming a Lennard–Jones-type potential, the dissociation energy was estimated to be 2.4 kJ mol−1, which was close to the value for Ar–DME, 2.5 kJ mol−1.  相似文献   

15.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

16.
The paper describes the use of active charcoal and a 13X molecular sieve at 78°K to pump all-glass apparatuses with a small volume (up to 5000 cm3) from atmospheric pressure to a pressure region of 10–2 mm Hg. At this pressure an outgassed second pumping stage (also sorbent) permits pressures from 10–6 to 10–7 mm Hg to be obtained. Active charcoal was also used as a two-stage fore pump (p=10–6 mm Hg) for a one-stage mercury diffusion pump and in this system pressures of 5 to 10×10–10 mm Hg were achieved.  相似文献   

17.
The Hall effect in amorphous Pd80Si20 and Pd80–x Si20Co x , wherex=2, 4, 6 (at.% are implied throughout) alloys was investigated. Measurements were carried out at r.t. in fields up to 17·5 kG. Also the electrical conductivity was measured. The Hall effect was found negative in all alloys of the above composition. Observedx-dependence of the Hall constantR H tends to change the sign of the effect and is interpreted on the assumption that an extraordinary Hall effect manifests itself besides the ordinary one in Co-containing alloys. The value ofR H for the basal alloy should be looked upon as an evidence of electron transfer from glass-former (Si) to transition metal (Pd) empty d-states. The values ofR H obtained for the alloys withx=0, 2, 4, 6 are respectively, –7·8; –8·7; –8·3; –5·2 (×10–5 cm3/A. sec throughout).  相似文献   

18.
Na2 excited from the X1Σg+ state to the A1Σu+ state by a narrow band (3 MHz) Rhodamine-6G dye laser at 6022.3 Å, the same wavelength at which Na undergoes the 3s–5s two-photon transition, gives four fluorescence series from A1Σu+ levels (v′ = 21, J′ = 26), (18, 33), (33, 19), and (34, 50). The last two series are much weaker in intensity, and at long wavelengths many doublets are lost in the background noise. The same (34, 50) fluorescence series was found by other workers in the lab using a Kr+ (5682 Å) laser as excitation source. Their analysis agrees very well with the findings in the work.  相似文献   

19.
By taking nuclear core excitations into account, detailed structure calculations of 89 ΛY have been performed as a function of the Λ spin–orbit splitting. The obtained wave functions have been used to estimate the (π+,K+) reaction cross sections within the distorted-wave impulse approximation (DWIA). A theoretical explanation is given quantitatively for the first time of how to understand the doublet substructure of each major peak observed in medium-heavy hypernuclear production. A small Λ spin–orbit splitting of around δ(0fΛ)=0.2 MeV is deduced, a value consistent with the small ΛN two-body spin–orbit interactions deduced from γ-ray measurements in three light hypernuclei.  相似文献   

20.
The use of3Jcoupling information in deriving dihedral-angle restraints for polypeptide-structure determination in the presence of conformational equilibria is illustrated withantamanide,cyclo(–Val1–Pro2– Pro3– Ala4– Phe5– Phe6– Pro7– Pro8– Phe9– Phe10–). The experimental basis comprises accurate three-bond coupling constants as obtained from both homonuclear [C. Griesinger, O. W. Sørensen, and R. R. Ernst,J. Magn. Reson.75,474 (1987)] and heteronuclear [J. M. Schmidt,J. Magn. Reson.124,298 (1997)] exclusive correlation spectroscopy (E.COSY). For the backbone and side-chain dihedral angles in the nonproline residues, φ and χ1, respectively, probability-distribution functions are derived and evaluated on the basis of χ2statistics and significance estimates. Various motional models are considered in the quantitative compilation of molecular-geometry parameters from spin-system parameters. From the3Jcoupling analysis, antamanide is found to possess a very flexible structure which is consistent with the results previously obtained in homonuclear NOE and13C–T1relaxation studies. To fully agree with experiment, rotamer equilibria must be assumed for almost all of the torsions investigated in the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号