首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Torsional vibrations of a wheel about its leg axis arising in the carriage rectilinear motion were dubbed the shimmy phenomenon. Because of insufficient understanding of dry friction laws in the case of point contact, the causes of the shimmy phenomenon were explained by specific features of tyre deformation [1–3].  相似文献   

3.
4.
5.
6.
The problem of the search of the invariants of an anisotropic elastic tensor representing the mechanical response of a complex elastic body in a two dimensional space is addressed, in particular for a tensor that does not possess all the tensor symmetries typical of classical elasticity. The invariants of the stiffness tensor are found and all the possible types of orthotropy are discussed.  相似文献   

7.
8.
The paper deals with a direct central impact of two infinite cylindrical bodies having differently shaped cross sections and made of different materials. A nonstationary plane problem of elasticity is solved. The contact boundary is moving and determined during the solution. A mixed boundary-value problem is formulated. Its solution has the form of Fourier series. Satisfying mixed boundary conditions gives an infinite system of Volterra equations of the second kind for the unknown coefficients of the series. The basic characteristics of the impact process and their dependence on the physical and mechanical properties of the bodies are determined numerically Translated from Prikladnaya Mekhanika, Vol. 45, No. 2, pp. 36–45, February 2009.  相似文献   

9.
S. Zahorski 《Rheologica Acta》1982,21(4-5):524-526
The qualitative changes of dynamic lift and friction forces caused by small-amplitude harmonic vibrations superimposed on flows in a plane slider bearing are considered for simple viscous and viscoelastic lubricating fluids. Low- and high-frequency disturbances are analysed in greater detail and the most beneficial situations discussed.  相似文献   

10.
Some possibilities of improving the lift-to-drag ratio of lifting bodies in a supersonic flow with a plane shock attached to the leading edges are analyzed.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 131–141, July–August, 1996.  相似文献   

11.
12.
We study the effects of a small curvature of the middle plane of a thickness-shear mode crystal plate resonator on its vibration frequencies, modes and acceleration sensitivity. Two-dimensional equations for coupled thickness-shear, flexural and extensional vibrations of a shallow shell are used. The equations are simplified to a single equation for thickness-shear, and two equations for coupled thickness-shear and extension. Equations with different levels of coupling are used to study vibrations of rotated Y-cut quartz and langasite resonators. The influence of the middle plane curvature and coupling to extension is examined. The effect of middle plane curvature on normal acceleration sensitivity is also studied. It is shown that the middle plane curvature causes a frequency shift as large as 10−8 g−1 under a normal acceleration. These results have practical implications for the design of concave–convex and plano-convex resonators.  相似文献   

13.
An analytic solution is obtained in the work in a Newtonian approximation [1] for the flow-past problem for a plane blunt body by a steady-state uniform hypersonic inviscous space-radiating gas flow. The hypersonic flow-past problem for axisymmetrical blunt bodies by a nonviscous space-radiating gas has been previously considered [2–4]. In this case a satisfactory solution of the problem was obtained even in a zero-th approximation by decomposing the unknown values in terms of a parameter equal to the ratio of gas densities before and after passage of the shock wave. The solution of the problem in a zero-th approximation with respect to in the case of flow-past of plane blunt bodies does not turn out to be satisfactory, since the departure of the shock and the radiant flux to the body as gas flows into the shock layer turns out to be strongly overstated under nearly adiabatic conditions. Freeman [5] demonstrated that results may be significantly improved for flow-past of a plane blunt body by a nonradiating gas if a more precise expression is used for the tangential velocity component expressed in a new approximation with respect to the parameter . This refinement is applied in this work for solving the flow-past problem for a plane blunt body by a space-radiating gas. The distribution of the gasdynamic parameters in the shock layer, the departure of the shock wave, and the radiant heat flux to the surface of the body are found. The solution obtained is analyzed in detail for the example of flow-past regarding a circular cylinder.Translated from Zhurnal Prikladnoi Mekhanikii Tekhnicheskoi Fiziki, No. 3, 68–73, May–June, 1975.  相似文献   

14.
15.
16.
A method is suggested in [1] for calculating supersonic flow past smooth bodies that uses an analytic approximation of the gasdynamic functions on layers and the method of characteristics for calculating the flow parameters at the nodes of a fixed grid. In the present paper this method is discussed for three-dimensional flows of a perfect gas in general form for cylindrical and spherical coordinate systems; relations are presented for calculating the flow parameters at the layer nodes, results are given for the calculation of the flow for specific bodies, and results are shown for a numerical analysis of the suggested method. Three-dimensional steady flows with plane symmetry are considered. In the relations presented in the article all geometric quantities are referred to the characteristic dimension L, the velocity components u, v, w and the sonic velocitya are referred to the characteristic velocity W, the density is referred to the density of the free stream, and the pressure p is referred to w2.  相似文献   

17.
18.
19.
S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 31, No. 12, pp. 74–80, December, 1995.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号