首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new, rapid, selective, cheap and simple RP-LC method has been developed and validated for the simultaneous determination of clobetasol propionate and calcipotriol mixtures in bulk drugs (raw materials) and in a novel-fixed dose emulgel formulation. Separation was carried out using a NovaPak C18 column with methanol:water (74:26 v/v) as mobile phase for isocratic elution at a flow rate of 1.0 mL min?1. The column temperature was set at 25 °C. Calibration curves were established ranging between 0.5 and 20 μg mL?1 and 0.5 and 10 μg mL?1 for clobetasol propionate and calcipotriol, respectively. Limit of detection and limit of quantification values of the method was found as 0.16 and 0.48 μg mL?1 for clobetasol propionate and 0.10 and 0.30 μg mL?1 for calcipotriol, respectively. The method was validated in accordance with ICH guidelines and obtained results proved that the proposed method was precise, accurate, selective and sensitive for the simultaneous analysis of clobetasol propionate and calcipotriol. The proposed method can be easily applied for the simultaneous determination of clobetasol propionate and calcipotriol in prepared emulgel formulations. The obtained validation results showed that the RP-LC method is suitable for routine quantification of clobetasol propionate and calcipotriol in emulgel formulations with high precision and accuracy.  相似文献   

2.
A rapid, simple, stability‐indicating forced degradation study of clobetasol 17‐propionate was conducted using RP‐HPLC. The method was used to analyze clobetasol 17‐propionate in methanol, propylene glycol, and a cream formulation. Isocratic elution of clobetasol and its degradation products was achieved using a Nova‐Pak® 4 μm C18 150 mm × 3.9 mm id cartridge column and a mobile phase of methanol: water (68:32 v/v) at a flow rate of 0.9 mL min?1. Quantitation was achieved with UV detection at 239 nm. Nondegraded clobetasol was eluted at a retention time of 6.0 min. Clobetasol 17‐propionate was subjected to different stress conditions viz., acidic, basic, heat, oxidation, light, and neutral hydrolysis. The greatest degradation occurred under strong base and oxidative conditions. Strong base‐degraded clobetasol produced additional peaks at retention times of 1.8, 4.0, 5.0, and 8.0 min and clobetasol oxidation degradation peaks eluted at 2.2 and 24 min. Complete validation was performed for linearity, accuracy, and precision over the concentration range 0.15–15 μg mL?1. All data were analyzed statistically and this RP‐HPLC method proved to be accurate, precise, linear, and stability indicating for the quantitation of clobetasol 17‐propionate in methanol, propylene glycol, and cream formulations.  相似文献   

3.
A multiresidue method for the determination of 12 glucocorticoids (clobetasol propionate, budesonide, triamcinolone, triamcinolone acetonide, fludrocortisone acetate, flumethasone, beclomethasone, prednisone acetate, 6‐α‐methylprednisolone, hydrocortisone, cortisone, and prednisone) in bovine milk was developed using liquid chromatography with tandem mass spectrometry. Isoflupredone was used as an internal standard. Milk samples were treated with ethyl acetate to extract glucocorticoids and were frozen at −20°C for 6 h to precipitate fat. The extract was dried under nitrogen, and residues were dissolved in an acetonitrile/water solution. A further clean‐up step was used by dispersive solid‐phase extraction, with octadecyl silica and primary secondary amine as the absorbents. The recoveries of glucocorticoids spiked at 0.5, 1.0, 10.0 μg/kg ranged from 75.7 to 117.3%, except for clobetasol propionate and budesonide (16.1–49.5%). The limits of quantification were 0.01–0.5 μg/kg in milk. This method has been successfully applied in real samples. The results demonstrated that this method is simple, robust, and suitable for identification of glucocorticoid residues in milk.  相似文献   

4.
A simple method has been developed for the simultaneous determination of N-butylscopolamine bromide and oxazepam in pharmaceutical formulations using first-order digital derivative spectrophotometry. Acetonitrile was selected as the solvent in which both compounds showed well-defined bands. Both analytes showed good stability in this solvent when solutions of the analytes were exposed to light and temperatures between 20 degrees and 80 degrees C. The simultaneous determination of both drugs was performed by the zero-crossing method at 226.0 and 257.0 nm for N-butylscopolamine and oxazepam, respectively. The linear range of determination was found to be 2.5 x 10(-7) to 8.0 x 10(-5) mol/L for N-butylscopolamine and 7.1 x 10(-8) to 8.0 x 10(-5) mol/L for oxazepam. A very good level of repeatability (relative standard deviation) of 0.2% was observed for N-butylscopolamine and oxazepam. The ingredients commonly found in pharmaceutical formulations do not interfere. The proposed method was applied to the determination of these drugs in pharmaceutical formulations (capsules).  相似文献   

5.
A simple and fast method was developed for the simultaneous determination of dapsone and pyrimethamine by first-order digital derivative spectrophotometry. Acetonitrile was used as a solvent to extract the drugs from the pharmaceutical formulations, and the samples were subsequently evaluated directly by digital derivative spectrophotometry. The simultaneous determination of both drugs was performed by the zero-crossing method at 249.4 and 231.4 nm for dapsone and pyrimethamine, respectively. The best signal-to-noise ratio was obtained when the first derivative of the spectrum was used. The linear range of determination for the drugs was from 6.6 x 10(-7) to 2.0 x 10(-4) and from 2.5 x 10(-6) to 2.0 x 10(-4) mol/L for dapsone and pyrimethamine, respectively. The excipients of commercial pharmaceutical formulations did not interfere in the analysis. Chemical and spectral variables were optimized for determination of both analytes. A good level of repeatability, 0.6 and 1.7% for dapsone and pyrimethamine, respectively, was observed. The proposed method was applied for the simultaneous determination of both drugs in pharmaceutical formulations.  相似文献   

6.
A reliable and simple method for the routine analysis of pharmaceutical dosage forms by high-performance liquid chromatography using a C18 Bondapak reversed-phase column with a binary solvent system consisting of acetonitrile and 0.05 M potassium dihydrogen phosphate has been developed. Standardised extraction procedures for drugs in various dosage forms have been developed and successfully applied to a wide range of current pharmaceutical formulations.  相似文献   

7.
ABSTRACT: A TLC densitometric method was developed for simultaneous determination of four anabolic androgenic steroids (AAS) of testosterone derivatives including testosterone propionate (TP), testosterone phenyl propionate (TPP), testosterone isocaproate (TI) and testosterone deaconate (TD) in their pharmaceutical products. Separation was carried out on Al based TLC plates, pre-coated with silica gel 60F-254 using hexane and ethyl acetate (8.5:1.5, v/v). Spots at Rf 0.31+/-0.01, 0.34+/-0.01, 0.40+/-0.01 and 0.45+/-0.02 were recognized as TPP, TP, TI and TD, respectively. Quantitative analysis was done by densitometric measurements at lambdamax 251 nm for all derivatives. The developed method was validated as per ICH guidelines. Method was found linear over the concentration range of 200-1200 ng/spot with the correlation coefficient of 0.995, 0.993, 0.995 and 0.996 for TP, TPP, TI, TD, respectively. Limit of detection for all derivatives were in the range of 16.7-22.3 ng/spot while limit of quantitation were found to be in the range of 55.7-70.9 ng/spot. The developed TLC method can be applied for the simultaneous routine analysis of testosterone derivatives in their individual and combined pharmaceutical formulations.  相似文献   

8.
《Analytical letters》2012,45(15):2679-2689
Abstract

A direct and simple first derivative spectrophotometric method has been developed for the determination of mefenamic acid and paracetamol in pharmaceutical formulations. A methanolic hydrochloric acid solution was used as solvent for extracting the drugs from the formulations and subsequently the samples were evaluated directly by derivative spectrophotometry. Simultaneous determination of both drugs can be carried out using the zero-crossing and the graphical methods. The methods do not require simultaneous equations to be solved. The calibration graphs were linear in the ranges from 1.8 × 10?6 to 1.6 × 10?4 M of mefenamic acid and from 4.1×10?6 to 1.4 × 10?4 M of paracetamol. The ingredients commonly found in commercial pharmaceutical formulations do not interfere. The proposed method was applied to the determination of these drugs in tablets.  相似文献   

9.
Two rapid, simple and sensitive extractive specrophotometric methods has been developed for the determination of anti-tussive drugs, e.g., dextromethorphan hydrobromide (DEX) and pipazethate hydrochloride (PiCl) and anti-spasmodic drugs, e.g., drotaverine hydrochloride (DvCl) and trimebutine maleate (TM) in bulk and in their pharmaceutical formulations. The proposed methods depend upon the reaction of cobalt(II)-thiocyanate (method A) and molybdenum(V)-thiocyanate ions (method B) with the cited drugs to form stable ion-pair complexes which extractable with an n-butnol-dichloromethane solvent mixture (3.5:6.5) and methylene chloride for methods A and B, respectively. The blue and orange red color complexes are determined either colorimetrically at lambdamax 625 nm (using method A) and 467 or 470 nm for (DEX and PiCl) or (DvCl and TM), respectively (using method B). The concentration range is 20-400 and 2.5-50 microg mL-1 for methods A and B, respectively. The proposed method was successfully applied for the determination of the studied drugs in pure and in pharmaceutical formulations applying the standard additions technique and the results obtained in good agreement well with those obtained by the official method.  相似文献   

10.
Muñoz RA  Matos RC  Angnes L 《Talanta》2001,55(4):855-860
A simple, rapid and precise amperometric method has been developed for quantification of ascorbic acid (AA) in pharmaceutical formulations using flow-injection analysis (FIA). A slice of recordable compact disc (CD) modified by electrodeposition of platinum was employed as the working electrode. The proposed flow system allows determinations in the 1 mumol l(-1) of the analyte and enables 90 determinations per h, employing only 150-mul sample. The method permits the direct quantification of ascorbic acid in many pharmaceutical products, avoiding cumbersome processes as previous separations, solvent extraction or sample filtration. This new procedure was applied to commercial pharmaceutical tablets and the results obtained were identical than the ones obtained by the classical iodometric method. The calibration plots for freshly prepared ascorbic acid standards were highly linear in the concentration range of 1-10 mumol l(-1) with a relative standard deviation (R.S.D.) <1%. For all real samples studied, the deviations were situated between 0.5 and 8.7%.  相似文献   

11.
《Analytical letters》2012,45(18):1625-1634
Abstract

Two pH- induced difference- spectrophotometric procedures for the determination of oxyphenbutazone in pharmaceutical formulations are reported. Both procedures depend upon the sensitivity of the ultraviolet spectrum of oxyphenbutazone towards the pH of the solvent medium. In one procedure, the absorbance difference of oxyphenbutazone in an acid solvent (0.01 NHCl) and in an alkaline one (0.01 N NaOH) is measured at 254 nm; the mean percentage recovery amounts to 100.2±1.23 (p=0.05). The second procedure depends upon measurement of the absorbance difference of the drug in the acid solvent then in a pH 7-phosphate buffer at 262 nm; the mean percentage recovery amounts to 100.1±1.03 (p=0.05). The possible sources of interference in pharmaceutical formulations are studied and the two procedures are adapted to the analysis of some market preparations collected at random.  相似文献   

12.
Barbosa J  Sanz-Nebot V  Torrero E 《Talanta》1991,38(4):425-432
The acid-base equilibria of a series of bases of pharmaceutical interest have been studied in acetonitrile medium and used to investigate the possibility of the use of this solvent to determine basic substances with complex and diverse structure. The pK(HB+) values of a series of cardiovascular compounds have been determined. From these values, simple potentiometric and visual titrations in acetonitrile media are proposed for the assay of bases in pharmaceutical formulations.  相似文献   

13.
杨飘飘  黄伟  李丽霞  刘红 《色谱》2023,41(3):250-256
采用超高效液相色谱-串联质谱法建立了化妆品中氯倍他索乙酸酯的检测方法,适用于膏霜乳类、凝胶类、泥类、贴膜类和液体(水)类5种常见化妆品基质。对影响被测物质的前处理方法、提取溶剂、提取时间等因素和色谱、质谱条件等进行了考察。最终建立方法为样品经乙腈涡旋分散、超声提取、过滤后用超高效液相色谱-串联质谱仪测定,采用Waters CORTECS C18色谱柱(150 mm×2.1 mm, 2.7 μm),以水和乙腈作为流动相分离,在电喷雾正离子模式(ESI+)下,以多反应监测(MRM)方式采集,采用基质匹配标准曲线进行定量分析。5种基质类型下,被测物质在0.9~37 μg/L的范围内线性拟合良好,线性相关系数(R2)均超过0.99。方法的检出限为0.03 μg/g,定量限为0.09 μg/g。在定量限、2倍定量限和10倍定量限3个水平下的加标回收率试验中,被测物质在5种基质中的回收率范围为83.2%~103.2%,相对标准偏差(RSD, n=6)范围为1.4%~5.6%。采用该方法对不同基质类型的化妆品样品进行筛查,共发现5批阳性样品,其中氯倍他索乙酸酯的含量范围为1.1~48.1 μg/g。该方法操作简单,灵敏可靠,适用于不同基质类型化妆品的高通量定性定量筛查分析,为监测化妆品中的非法添加提供了技术支持及理论依据。  相似文献   

14.
The direct analysis of pharmaceutical formulations and active ingredients from non‐bonded reversed‐phase thin layer chromatography (RP‐TLC) plates by desorption electrospray ionisation (DESI) combined with ion mobility mass spectrometry (IM‐MS) is reported. The analysis of formulations containing analgesic (paracetamol), decongestant (ephedrine), opiate (codeine) and stimulant (caffeine) active pharmaceutical ingredients is described, with and without chromatographic development to separate the active ingredients from the excipient formulation. Selectivity was enhanced by combining ion mobility and mass spectrometry to characterise the desorbed gas‐phase analyte ions on the basis of mass‐to‐charge ratio (m/z) and gas‐phase ion mobility (drift time). The solvent composition of the DESI spray using a step gradient was varied to optimise the desorption of active pharmaceutical ingredients from the RP‐TLC plates. The combined RP‐TLC/DESI‐IM‐MS approach has potential as a rapid and selective technique for pharmaceutical analysis by orthogonal gas‐phase electrophoretic and mass‐to‐charge separation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
《Analytical letters》2012,45(6):965-976
Abstract

Acetaminophen, phenylephrine, dextromethorphan, and chlorpheniramine are frequently associated in pharmaceutical formulations against the common cold. A new high performance liquid chromatography (HPLC) method has been developed for the simultaneous determination of these active pharmaceutical ingredients in pharmaceutical formulations. The separation and quantitation were achieved on a 25 cm underivatized silica column using a mobile phase of methanol: water (containing 6.0 g of ammonium acetate and 10 ml of triethylamine per liter, pH adjusted to 5.0 with orthophosphoric acid), 95:5%(v/v). Detection was carried out using a variable wavelength UV-vis detector at 254 nm for acetaminophen, at 220 nm for phenylephrine, and at 227 nm for dextromethorphan and chlorpheniramine. The method showed linearity for the acetaminophen, phenylephrine, dextromethorphan, and chlorpheniramine in the 162.5–650, 2.5–10, 7.5–30, and 1–4 µg/ml ranges, respectively. The intraday and interday RSDs ranged from 0.92 to 1.52%, 1.00 to 1.76%, 1.21 to 1.74% and 1.26 to 1.80% for the acetaminophen, phenylephrine, dextromethorphan, and chlorpheniramine, respectively. Compounds were eluted in a run time of less than 12 min.  相似文献   

16.
A simple isocratic liquid chromatographic method was developed for determination of lopinavir from its related impurities and assay for the first time. This method involves the use of a C(8) (Symmetry Shield RP8, 150 x 4.6 mm, 5 microm) column. The method was validated over the range of limit of quantitation (LOQ) to 120% of impurity specification limit and LOQ to 150% of working concentration for assay. The mobile phase consisted of a mixture of 50 mM of potassium phosphate buffer, acetonitrile and methanol in the ratio of 40:50:10. The flow rate was set at 1.0 mL/min with UV detection monitored at 210 nm. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. The developed method was validated for linearity, range, precision, accuracy and specificity. This method was successfully applied for content determination of lopinavir in pharmaceutical formulations. The method can be conveniently used in a quality control laboratory for routine analysis for assay and related substances as well for the evaluation of stability samples of bulk drugs and pharmaceutical formulations.  相似文献   

17.
 A micro extraction – spectrophotometric procedure is developed for the determination of bismuth in pharmaceutical formulations. The procedure is based on the extraction of tetraiodobismuthate(III) ion paired with benzyltributylammonium cation into chloroform. The application of Nile Blue as internal standard (IS) enabled good analytical performance for micro-scale analysis. The ratio between the absorbances measured at 491 nm (bismuth complex) and at 632 nm (IS) was taken as the analytical signal. The procedure was carried out in Eppendorf tubes, lowering significantly the use of reagents and the volume of organic solvent. In the calibration range up to 60 mgċl−1, the linear regression coefficient was 0.9999, the CV for 15 mgċl−1 and for 50 mgċl−1 Bi were 1.6% and 0.7% respectively. The results obtained in the analysis of pharmaceutical formulations were in good agreement with the results of EDTA titration method. Received November 25, 1999. Revision February 14, 2000.  相似文献   

18.
A bare graphite-epoxy composite was evaluated as an electrode material in the determination of atenolol in natural water samples and pharmaceutical formulations for which the analyte was spiked. Using a DPV procedure, a linear response was observed in the 4.45–84.7?µmol?L?1 range with a LOD?=?2.23?µmol?L?1, without need of surface renewal between successive runs, and recoveries between 92.5 and 107.5% for pharmaceutical formulations. The results obtained from the proposed procedure agreed with HPLC results within a 95% confidence level. During the determination of atenolol in water samples, recoveries between 96.1 and 102.6% were found.  相似文献   

19.
A sensitive flow-injection chemiluminescence method was developed for the determination of biotin in the pharmaceutical formulations. The affinity between avidin and biotin was used to adsorb biotin on the polystyrene, with subsequent quantification of biotin based on its ability to enhance the chemiluminescence(CL) signal generated by the redox reaction of potassium permanganate-luminol-CdTe nanoparticles CL system. The investigations prove that apart from 3-aminophthalate, the CdTe quantum dots(QDs) play both catalytic and emitter roles. Under optimum conditions, the linear range for the determination of biotin was 0.01-25ng/mL with a detection limit of 7.3?10-3 ng/mL(S/N=3). The relative standard deviation of 5 ng/L biotin was 2.06%(n=7). The proposed method was used to determine the biotin concentration in the pharmaceutical formulations and the recovery was between 96.4% and 104%. The proposed method is simple, convenient, rapid and sensitive.  相似文献   

20.
A flow injection system with spectrophotometric detection is proposed for determining l-ascorbic acid in pharmaceutical formulations. In this system a column containing Fe(OH)(3) immobilized in polyester resin (packed reactor) is inserted before the detector. Fe(III)-1,10-phenanthroline complex is reduced by l-ascorbic acid to produce Fe(II)-1,10-phenanthroline complex which is monitored at 510 nm. Under the optimum analytical conditions, the linearity of the calibration equation for l-ascorbic acid ranged from 5.0x10(-6) to 6.0x10(-5) M of added amount. The detection limit was 5.0x10(-7) M and recoveries between 98.5-102.0% were obtained. No interference was observed from the common excipients of pharmaceutical formulations and other active substances such as acetylsalicylic acid, caffeine and thiamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号