首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Considering surfactant solutions at concentrations exceeding the CMC, another relaxation process besides diffusion occurs, also affecting the dynamic surface tension. The latter equilibration process concerns a micellisation/demicellisation process, representing the disintegration of micelles into monomers. The micellisation kinetics are accounted for by adding a single source term to the diffusion equation of the free monomers.

In the present paper the integration of the diffusion equation is avoided by using the concept of the diffusion penetration depth. Nevertheless, when this approximation is made, good agreement is achieved between experiment and theory for micellar Triton X-100 solutions. Moreover, it follows that diffusion of micelles may not be neglected.  相似文献   


2.
A theoretical model for the dynamic surface tension of an air bubble expanding in micellar surfactant solution is proposed. The model accounts for the effect of expansion of the bubble surface during the adsorption of surfactant molecules (monomers) and the effect of disintegration of polydisperse micelles on the surfactant diffusion. Assuming small deviations from equilibrium and constant rate of expansion analytical expression for the surface tension and the subsurface concentration of monomers as a function of time is derived. The characteristic time of micellization is computed from the experimental data for two surfactants (sodium dodecyl sulfate and nonylphenol polyglycol ether) obtained by the maximum bubble pressure method.  相似文献   

3.
A theoretical model for the dynamic surface tension of an air bubble expanding in surfactant solution is proposed. The model accounts for the effect of convection on the surfactant diffusion and the effect of expansion of the bubble surface during the adsorption of surfactant molecules. Assuming small deviation from equilibrium and constant rate of expansion, an analytical solution for the surface tension and the subsurface concentration as a function of time is derived. The parameters of the model are computed from experimental data for sodium dodecyl sulfate obtained by the maximum bubble pressure method.  相似文献   

4.
The effect of the micelles on the dynamic surface tension of micellar surfactant solutions is studied experimentally by means of the maximum bubble pressure method. Different frequencies of bubbling ranging approximately between 1 and 30 s–1 are applied. The time dependence of the surface tension is calculated using a dead time correction. Water solutions of two types of surfactants with different concentrations are investigated: sodium dodecyl sulfate and nonylphenol polyglycol ether. The surface tension relaxes more quickly in the presence of micelles. The characteristic times of relaxation of the surface tension seem to be in the millisecond range. The time constants observed experimentally are explained in terms of the theory of surfactant diffusion affected by micellization kinetics.  相似文献   

5.
The polyoxyethylene chain of non-ionic surfactant Triton X-100 [4-(1,1,3,3-tetramethylbutyl) phenyl polyethylene glycol,TX-100] was degraded by permanganate in the presence of HClO4. The oxidative degradation rate and cloud point have been obtained as a function of [surfactant], [permanganate], [HClO4], and temperature. Dependence of the reaction rate on adding inorganic salts (Na4P2O7, NaF and MnCl2) was also examined. The oxidation rate increased with increase in [TX-100] and [H+]. The higher order kinetics with respect to [TX-100] at lower [H+] shifted to lower order at higher [H+]. The cloud point of TX-100 (67°C) shifted to lower temperature (23±0.5°C) after oxidative degradation of the polyoxyethylene chain. Evidence of complex formation between TX-100 and MnO 4 was obtained spectrophotometrically. Presence of the primary alcoholic (–OH) group in the TX-100 skeleton is responsible for the degradation of oxyethylene chain. Both monomeric and aggregated TX-100 molecules are oxidized by permanganate. A catalytic oxidation mechanism is proposed on the basis of the experimental findings.  相似文献   

6.
One of the essential differences in the design of bubble pressure tensiometers consists in the geometry of the measuring capillaries. To reach extremely short adsorption times of milliseconds and below, the so-called deadtime of the capillaries must be of the order of some 10 ms. In particular, for concentrated surfactant solutions, such as micellar solutions, short deadtimes are needed to minimize the initial surfactant load of the generated bubbles. A theoretical model is derived and confirmed by experiments performed for a wide range of experimental conditions, mainly in respect to variations in deadtime and bubble volume.  相似文献   

7.
Effects of carbon dioxide presence on the surface tension and adsorption kinetics of 1-hexanol solutions were investigated. Experiments were performed at a range of carbon dioxide vapor pressures and varying concentrations of 1-hexanol aqueous solution. Both dynamic and steady-state surface tensions of 1-hexanol aqueous solution were found to decrease with carbon dioxide pressure, and a linear relationship was observed between the steady-state surface tension and carbon dioxide pressure. To explain the experiments, adsorption and desorption of the two species (1-hexanol and carbon dioxide) from two sides of the vapor-liquid interface were considered. A modified Langmuir isotherm, the modified Langmuir equation of state and the modified kinetic transfer equation were developed. The resulting steady-state and dynamic surface tension data were modeled using the modified Langmuir equation of state and the modified kinetic transfer equation, respectively. Equilibrium constants and adsorption rate constants of 1-hexanol and carbon dioxide were evaluated through a minimization procedure for CO2 pressures ranging from 0 to 690 kPa. From the steady-state modeling, the equilibrium parameters for 1-hexanol and carbon dioxide adsorption from vapor phase and liquid phase were found unchanged at different pressures of carbon dioxide. From the dynamic modeling, the adsorption rate constants for 1-hexanol and carbon dioxide from vapor phase and liquid phase were found to decrease with carbon dioxide pressure. Some fluctuations in the fitting parameters of the dynamic modeling (adsorption rate constants) were observed. These fluctuations may be due to experimental errors, or more likely the limitations of the model used. A major limitation of the model is related to large differences in adsorption/desorption between initial and final stages of the process, and a single set of property parameters cannot describe both initial and final states of the system. Variations may occur depending on which set of data, of initial or final states, is used in the model predictions over the entire time range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号