首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an algorithm for finding approximate global solutions to quadratically constrained quadratic programming problems. The method is based on outer approximation (linearization) and branch and bound with linear programming subproblems. When the feasible set is non-convex, the infinite process can be terminated with an approximate (possibly infeasible) optimal solution. We provide error bounds that can be used to ensure stopping within a prespecified feasibility tolerance. A numerical example illustrates the procedure. Computational experiments with an implementation of the procedure are reported on bilinearly constrained test problems with up to sixteen decision variables and eight constraints.This research was supported in part by National Science Foundation Grant DDM-91-14489.  相似文献   

2.
This paper considers Stackelberg solutions for two-level linear programming problems under fuzzy random environments. To deal with the formulated fuzzy random two-level linear programming problem, an α-stochastic two-level linear programming problem is defined through the introduction of α-level sets of fuzzy random variables. Taking into account vagueness of judgments of decision makers, fuzzy goals are introduced and the α-stochastic two-level linear programming problem is transformed into the problem to maximize the satisfaction degree for each fuzzy goal. Through fractile criterion optimization in stochastic programming, the transformed stochastic two-level programming problem can be reduced to a deterministic two-level programming problem. An extended concept of Stackelberg solution is introduced and a numerical example is provided to illustrate the proposed method.  相似文献   

3.
A method for approximate solution of minimization problems for multivariable convex functions with convex constraints is proposed. The main idea consists in approximation of the objective function and constraints by piecewise linear functions and subsequent reduction of the initial convex programming problem to a problem of linear programming. We present algorithms constructing approximating polygons for some classes of single variable convex functions. The many-dimensional problem is reduced to a one-dimensional one by an inductive procedure. The efficiency of the method is illustrated by numerical examples.  相似文献   

4.
We introduce an efficient and robust proposal for solving linear systems arising at each iteration of primal-dual interior-point methods for linear programming. Our proposal is based on the stable system presented by Gonzalez-Lima et al. (Comput. Opt. Appl. 44:213–247, 2009). Using similar techniques as those employed in the splitting preconditioner introduced by Oliveira and Sorensen (Linear Algebra Appl. 394:1–24, 2005) we are able to express the stable system matrix in block form such that the diagonal blocks are nonsingular diagonal matrices and the off-diagonal blocks are matrices close to zero when the iterates are close to the solution set of the linear programming problem. For degenerate problems a perturbation of the diagonal is added. We use a low-cost fixed iterative method to solve this system. Numerical experiments have shown that our approach leads to very accurate solutions for the linear programming problem.  相似文献   

5.
J. Gwinner  N. Ovcharova 《Optimization》2015,64(8):1683-1702
In this paper, we first gather existence results for linear and for pseudo-monotone variational inequalities in reflexive Banach spaces. We discuss the necessity of the involved coerciveness conditions and their relationship. Then, we combine Mosco convergence of convex closed sets with an approximation of pseudo-monotone bifunctions and provide a convergent approximation procedure for pseudo-monotone variational inequalities in reflexive Banach spaces. Since hemivariational inequalities in linear elasticity are pseudo-monotone, our approximation method applies to nonmonotone contact problems. We sketch how regularization of the involved nonsmooth functionals together with finite element approximation lead to an efficient numerical solution method for these nonconvex nondifferentiable optimization problems. To illustrate our theory, we give a numerical example of a 2D linear elastic block under a given nonmonotone contact law.  相似文献   

6.
van Harten  A.  Sleptchenko  A. 《Queueing Systems》2003,43(4):307-328
Multi-class multi-server queueing problems are a generalisation of the well-known M/M/k queue to arrival processes with clients of N types that require exponentially distributed service with different average service times. In this paper, we give a procedure to construct exact solutions of the stationary state equations using the special structure of these equations. Essential in this procedure is the reduction of a part of the problem to a backward second order difference equation with constant coefficients. It follows that the exact solution can be found by eigenmode decomposition. In general eigenmodes do not have a simple product structure as one might expect intuitively. Further, using the exact solution, all kinds of interesting performance measures can be computed and compared with heuristic approximations (insofar available in the literature). We provide some new approximations based on special multiplicative eigenmodes, including the dominant mode in the heavy traffic limit. We illustrate our methods with numerical results. It turns out that our approximation method is better for higher moments than some other approximations known in the literature. Moreover, we demonstrate that our theory is useful to applications where correlation between items plays a role, such as spare parts management.  相似文献   

7.
In this paper, we analyze the outer approximation property of the algorithm for generalized semi-infinite programming from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). A simple bound on the regularization error is found and used to formulate a feasible numerical method for generalized semi-infinite programming with convex lower-level problems. That is, all iterates of the numerical method are feasible points of the original optimization problem. The new method has the same computational cost as the original algorithm from Stein and Still (SIAM J. Control Optim. 42:769–788, 2003). We also discuss the merits of this approach for the adaptive convexification algorithm, a feasible point method for standard semi-infinite programming from Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007).  相似文献   

8.
We present an approximation algorithm for solving large 0–1 integer programming problems whereA is 0–1 and whereb is integer. The method can be viewed as a dual coordinate search for solving the LP-relaxation, reformulated as an unconstrained nonlinear problem, and an approximation scheme working together with this method. The approximation scheme works by adjusting the costs as little as possible so that the new problem has an integer solution. The degree of approximation is determined by a parameter, and for different levels of approximation the resulting algorithm can be interpreted in terms of linear programming, dynamic programming, and as a greedy algorithm. The algorithm is used in the CARMEN system for airline crew scheduling used by several major airlines, and we show that the algorithm performs well for large set covering problems, in comparison to the CPLEX system, in terms of both time and quality. We also present results on some well known difficult set covering problems that have appeared in the literature.  相似文献   

9.
In this paper we propose a primal-dual interior-point method for large, sparse, quadratic programming problems. The method is based on a reduction presented by Gonzalez-Lima, Wei, and Wolkowicz [14] in order to solve the linear systems arising in the primal-dual methods for linear programming. The main features of this reduction is that it is well defined at the solution set and it preserves sparsity. These properties add robustness and stability to the algorithm and very accurate solutions can be obtained. We describe the method and we consider different reductions using the same framework. We discuss the relationship of our proposals and the one used in the LOQO code. We compare and study the different approaches by performing numerical experimentation using problems from the Maros and Meszaros collection. We also include a brief discussion on the meaning and effect of ill-conditioning when solving linear systems.This work was partially supported by DID-USB (GID-001).  相似文献   

10.
We consider a linear programming problem with unknown objective function. Random observations related to the unknown objective function are sequentially available. We define a stochastic algorithm, based on the simplex method, that estimates an optimal solution of the linear programming problem. It is shown that this algorithm converges with probability one to the set of optimal solutions and that its failure probability is of order inversely proportional to the sample size. We also introduce stopping criteria for the algorithm. The asymptotic normality of some suitably defined residuals is also analyzed. The proposed estimation algorithm is motivated by the stochastic approximation algorithms but it introduces a generalization of these techniques when the linear programming problem has several optimal solutions. The proposed algorithm is also close to the stochastic quasi-gradient procedures, though their usual assumptions are weakened.Mathematics Subject Classification (2000): 90C05, 62L20, 90C15Acknowledgments. I would like to thank two unknown referees for their fruitful suggestions that have helped to improve the paper.  相似文献   

11.
《Optimization》2012,61(1-4):149-162
Motivated by the successful application of mathematical programming techniques to difficult machine learning problems, we seek solutions of concave minimization problems over polyhedral sets with minimum number of nonzero components. We that if

such problems have a solution, they have a vertex solution with a minimal number of zeros. This includes linear programs and general linear complementarity problems. A smooth concave exponential approximation to a step function solves the minimumsupport problem exactly for a finite value of the smoothing parameter. A fast finite linear-programming-based iterative method terminates at a stationary point, which for many important real world problems provides very useful answers. Utilizing the

complementarity property of linear programs and linear complementarity problems, an upper bound on the number of nonzeros can be obtained by solving a single convex minimization problem on a polyhedral set  相似文献   

12.
This article proposes a practical computational procedure to solve a class of continuous-time linear fractional programming problems by designing a discretized problem. Using the optimal solutions of proposed discretized problems, we construct a sequence of feasible solutions of continuous-time linear fractional programming problem and show that there exists a subsequence that converges weakly to a desired optimal solution. We also establish an estimate of the error bound. Finally, we provide two numerical examples to demonstrate the usefulness of this practical algorithm.  相似文献   

13.
We develop a generalized approximation method (GAM) to obtain a solution of a thin film flow of a third grade fluid on a moving belt. The GAM generates a monotone sequence of solutions of linear problems. The sequence of solutions of linear problems converges monotonically and rapidly to a solution of the original nonlinear problem. We present some numerical simulations to illustrate and confirm our results.  相似文献   

14.
We present a method for finding exact solutions of Max-Cut, the problem of finding a cut of maximum weight in a weighted graph. We use a Branch-and-Bound setting that applies a dynamic version of the bundle method as bounding procedure. This approach uses Lagrangian duality to obtain a “nearly optimal” solution of the basic semidefinite Max-Cut relaxation, strengthened by triangle inequalities. The expensive part of our bounding procedure is solving the basic semidefinite relaxation of the Max-Cut problem, which has to be done several times during the bounding process. We review other solution approaches and compare the numerical results with our method. We also extend our experiments to instances of unconstrained quadratic 0–1 optimization and to instances of the graph equipartition problem. The experiments show that our method nearly always outperforms all other approaches. In particular, for dense graphs, where linear programming-based methods fail, our method performs very well. Exact solutions are obtained in a reasonable time for any instance of size up to n = 100, independent of the density. For some problems of special structure we can solve even larger problem classes. We could prove optimality for several problems of the literature where, to the best of our knowledge, no other method is able to do so. Supported in part by the EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438.  相似文献   

15.
This paper is concerned with the stability and approximation properties of enriched meshfree and generalized finite element methods. In particular we focus on the particle-partition of unity method (PPUM) yet the presented results hold for any partition of unity based enrichment scheme. The goal of our enrichment scheme is to recover the optimal convergence rate of the uniform h-version independent of the regularity of the solution. Hence, we employ enrichment not only for modeling purposes but rather to improve the approximation properties of the numerical scheme. To this end we enrich our PPUM function space in an enrichment zone hierarchically near the singularities of the solution. This initial enrichment however can lead to a severe ill-conditioning and can compromise the stability of the discretization. To overcome the ill-conditioning of the enriched shape functions we present an appropriate local preconditioner which yields a stable and well-conditioned basis independent of the employed initial enrichment. The construction of this preconditioner is of linear complexity with respect to the number of discretization points. We obtain optimal error bounds for an enriched PPUM discretization with local preconditioning that are independent of the regularity of the solution globally and within the employed enrichment zone we observe a kind of super-convergence. The results of our numerical experiments clearly show that our enriched PPUM with local preconditioning recovers the optimal convergence rate of O(h p ) of the uniform h-version globally. For the considered model problems from linear elastic fracture mechanics we obtain an improved convergence rate of O(h p+δ ) with d 3 \frac12{\delta\geq\frac{1}{2}} for p = 1. The convergence rate of our multilevel solver is essentially the same for a purely polynomial approximation and an enriched approximation.  相似文献   

16.
We present a randomized procedure for rounding fractional perfect matchings to (integral) matchings. If the original fractional matching satisfies any linear inequality, then with high probability, the new matching satisfies that linear inequality in an approximate sense. This extends the well-known LP rounding procedure of Raghavan and Thompson, which is usually used to round fractional solutions of linear programs.?We use our rounding procedure to design an additive approximation algorithm to the Quadratic Assignment Problem. The approximation error of the algorithm is εn 2 and it runs in n O (log n /ε2) time.?We also describe Polynomial Time Approximation Schemes (PTASs) for dense subcases of many well-known NP-hard arrangement problems, including MINIMUM LINEAR ARRANGEMENT, MINIMUM CUT LINEAR ARRANGEMENT, MAXIMUM ACYCLIC SUBGRAPH, and BETWEENNESS. Received: December 12, 1999 / Accepted: October 25, 2001?Published online February 14, 2002  相似文献   

17.
This study, that will be presented as two parts, develops a computational approach to a class of continuous-time generalized fractional programming problems. The parametric method for finite-dimensional generalized fractional programming is extended to problems posed in function spaces. The developed method is a hybrid of the parametric method and discretization approach. In this paper (Part I), some properties of continuous-time optimization problems in parametric form pertaining to continuous-time generalized fractional programming problems are derived. These properties make it possible to develop a computational procedure for continuous-time generalized fractional programming problems. However, it is notoriously difficult to find the exact solutions of continuous-time optimization problems. In the accompanying paper (Part II), a further computational procedure with approximation will be proposed. This procedure will yield bounds on errors introduced by the numerical approximation. In addition, both the size of discretization and the precision of an approximation approach depend on predefined parameters.  相似文献   

18.
We construct and analyze an algorithm for the numerical computation of Burgers' equation for preceding times, given an a priori bound for the solution and an approximation to the terminal data. The method is based on the “backward beam equation” coupled with an iterative procedure for the solution of the nonlinear problem via a sequence of linear problems. We also present the results of several numerical experiments. It turns out that the procedure converges “asymptotically,” i.e., in the same manner in which an asymptotic expansion converges. This phenomenon seems related to the “destruction of information,” at t = 0, which is typical in backwards dissipative equations. We derive a priori stability estimates for the analytic backwards problem, and we observe that in many numerical experiments, the distance backwards in time where significant accuracy can be attained is much larger than would be expected on the basis of such estimates. The method is useful for small solutions. Problems where steep gradients occur require considerably more precision in measurement. The algorithm is applicable to other semilinear problems.  相似文献   

19.
We define the timetable constrained distance minimization problem (TCDMP) which is a sports scheduling problem applicable for tournaments where the total travel distance must be minimized. The problem consists of finding an optimal home-away assignment when the opponents of each team in each time slot are given. We present an integer programming, a constraint programming formulation and describe two alternative solution methods: a hybrid integer programming/constraint programming approach and a branch and price algorithm. We test all four solution methods on benchmark problems and compare the performance. Furthermore, we present a new heuristic solution method called the circular traveling salesman approach (CTSA) for solving the traveling tournament problem. The solution method is able to obtain high quality solutions almost instantaneously, and by applying the TCDMP, we show how the solutions can be further improved.  相似文献   

20.
In this paper, an approximation algorithm for solving nonconvex multiobjective programming problems (NCMOPs) is presented. We modify Benson’s method using cones instead of hyperplanes. This algorithm uses an inner approximation and an outer approximation to generate (weakly) efficient solutions and (weakly \(\varepsilon \)-) nondominated points of NCMOPs. Some numerical examples are presented to clarify the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号