首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new symmetrical vicinal dioxime, N,N′-bis-{4-[[(2-hydroxyphenyl)methylene]hydrazinecarbonyl]phenyl}diaminoglyoxime (LH4), was prepared by reacting anti-dichloroglyoxime with salicylaldehyde 4-aminobenzoylhydrazone. The reaction of ligand with Ni2+ salts gave mono-and homopentanuclear complexes, [Ni(LH3)2] and [Ni5(LH)2X2]. Furthermore, heteropentanuclear complexes of dioxime ligand, [Cu4Ni(LH)2X4], were prepared by the reaction of [Ni(LH3)2)] with Cu2+ salt and a monodentate ligand (X = SCN, CN, or N 3 ). The structures of both the new symmetrical vicinal dioxime and its complexes were identified by elemental analyses, IR, 1H NMR, UV-VIS spectra, and magnetic susceptibility. The elemental analyses and spectral data indicate that the hydrazone side of ligand acts as a O,N,O′ tridentate and the fourth position is occupied with monodentate anion such as SCN, CN, N 3 .  相似文献   

2.
A new vic-dioxime, N-{4-[[(2-hydroxyphenyl)methylene]hydrazinecarbonyl]phenyl}aminoglyoxime (H3L), was prepared by the reaction of anti-chloroglyoxime with salicylaldehyde 4-aminobenzoylhydrazone. The reaction of H3L with Cu(II) salts and an appropriate simple ligand gave only homotrinuclear complexes [Cu3(HL)2X2], whereas the reaction of H3L with Ni(II) salts gave mono-and homotrinuclear complexes [Ni(H2L)2 and Ni3(HL)2X2]. Also, heterotrinuclear complexes of H3L were prepared by the reaction of Ni(H2L)2 with Cu(II) salt and an appropriate simple ligand, [NiCu2(HL)2X2], X = Cl, NO 3 , SCN, CN, and N 3 . The new vic-dioxime and its complexes were identified by elemental analyses, IR, 1H NMR, UV-VIS, magnetic susceptibility, and mass spectral data. The elemental analyses and spectral data indicated that the hydrazone side of H3L acted as monobasic tridentate and the fourth position was occupied by simple ligands, such as Cl, NO 3 , SCN, CN, and N 3 . The text was submitted by the author in English.  相似文献   

3.
The kinetics of nucleophilic substitution of pyridine in bis-cationic [Pt(L)(py)]2+ complexes (L=SNS, NNN, NSN) [SNS=bis(methylthiomethyl)pyridine, NNN=bis(2-pyridylmethyl)amine, NSN=bis(2-pyridylmethyl)sulphide] by a series of nucleophiles (Cl, Br, I, N3, (C2H5)2S, NH3, thiourea (tu), NO2, C5H10NH, SeCN, SCN, CN when L=SNS; Cl, Br, I, N3, (C2H5)2S, SCN, NH3, NO2 when L=NNN; Br, N3, NO2, NH3, C5H10NH when L=NSN) have been measured in MeOH at 25 °C, μ =0.1 mol dm−3 (LiClO4 or LiCF3SO3). The logarithms of the second-order rate constants calculated at μ=0, log k° 2, do not follow the dependence upon the n° Pt scale. In particular, the reactivity of the biphilic reagents tu, SeCN, SCN and, to a lesser extent, NO 2, towards these doubly charged substrates is largely lower than expected on the basis of the n° Ptscale. There are good linear relationships between logk° 2 for the bis-cationic substrate [Pt(SNS)(py)]2+, chosen as the standard, and log k° 2 for the same reactions with [Pt(NNN)(py)]2+, [Pt(NSN)(py)]2+ and other double charged complexes previously studied. A new wide nucleophilicity scale based on [Pt(SNS)(py)]2+, that is appropriate to all the bis-cationic substrates, is here proposed  相似文献   

4.
Crystalline substances formed in the (MF)1−x −(M′F) x −SbF3−H2O systems (M, M′=Na, K, Rb, Cs, and NH4;x=0 to 1) were investigated by121,123Sb NQR spectroscopy at 77 K. The formation of individual SbIII complexes NaCs3Sb4F16·H2O and NaKSbF5·1.5H2O, and statistically disordered mixed crystals M1−x −M′ x −SbF4 (M, M′=K, Rb, Cs, and NH4) was established. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 109–112, January, 1999.  相似文献   

5.
The equilibrium geometric parameters and energetic and spectroscopic characteristics of low-lying conformers for several series of model cage-substituted (mixed) borane, alane, and gallane closo-dianions M i M′12 − i H122−(M, M′ = B, Al, Ga), as well as of “bare” gallium-aluminum anions Ga i Al12−i with i = 0–12, were calculated within the B3LYP approximation of the density functional theory using 6–31G* and 6–311+G** basis sets. Differences in structure and stability between alanoborane clusters of similar composition are revealed. In clusters where the M and M’ heteroatoms are close in size and electronegativity (in gallonoalanes and gallium-aluminum anions), successive substitutions of M′ for M are accompanied by small energy changes and occur quasi-stochastically in different positions of the cage. When the substituents are significantly different (in alanoboranes), mixed clusters are unstable against disproportionation into homonuclear “predecessors” M12H122− and M′12H122−, and the most favorable M i M′12 − i H122− structures among them are those in which M i M′12 − i the cages are subdivided into homonuclear “subclusters” M i and M′t′12−i with a maximal number of homonuclear bonds (M-M and M′-M′) and a minimal number of heteronuclear bonds (M-M′).  相似文献   

6.
Two new CuI coordination polymers, [CuI(TATP) (CN)] n (1) and [CuI(bpy)(SCN)] n (2) (TATP = 1,4,8,9-tetranitrogen-trisphene, bpy = 2,2′-bipyiridine), have been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR, and X-ray crystallography. In 1 and 2, the metal centers are linked by bridging CN/SCN to form one-dimensional chains in the crystals and are stabilized by interchain π–π stacking interaction.  相似文献   

7.
Copper(II)-pyrrolidine dithiocarbamate (PDTC) complexes having the general formula, [Cu(PDTC)2], [Cu(PDTC)X2] (where X = Cl, I, CN, SCN) and [Cu(PDTC)(en)]+ (en = ethylenediamine) have been prepared and characterized by IR spectroscopy and by thermogravimetric analysis (TGA and DTA). The IR data suggests that coordination of pyrrolidine dithiocarbamate (PDTC) takes place through the two sulphur atoms in a symmetrical bidentate fashion. The results of thermal analysis are consistent with the proposed composition of the complexes.  相似文献   

8.
New bis-benzimidazole based diamide ligands N, N′-bis(2-methyl benzimidazolyl)-benzene-1,3-dicarboxamide [GBBA] and N-Octyl-N, N′-bis(2-methyl benzimidazolyl)-benzene- 1,3-dicarboxamide [O-GBBA] have been synthesized and utilized to prepare Cu(II) complexes of general composition [Cu(GBBA)X 2] · nH2O and [Cu(O-GBBA)X2] · n H2O, where X is an exogenous anionic ligand (X = Cl, NO3, SCN). The oxidation of electron deficient olefins has been investigated using [Cu(O-GBBA)X2] · nH2O as catalyst and TBHP as an alternate source of oxygen. The respective ketonic products have been isolated and characterized by 1H-NMR. The complex [Cu(GBBA)(NO3)2] · 4H2O has been characterized structurally. It crystallizes in a monoclinic space group C2/c. Low temperature EPR spectra have been obtained for the complexes that shows gII > gI > 2.0024, indicating a tetragonal geometry in the solution state. The complexes display a quasi reversible redox wave due to the Cu(II)/Cu(I) reduction process. The E1/2 values shift anodically as NO3 < SCN < Cl.  相似文献   

9.
Parent and mixed ligand complexes of cobalt and copper with antipyrine derivatives of 1,2-ethanediamine or piperazine and with 2-aminobenzothiazole (TAB) were synthesized and their thermal behaviour was investigated. The complexes contain N,N′-bis(4-antipyrylmethyl)-piperazine (BAMP) or N,N′-tetra(4-antipyrylmethyl)-1,2-diaminoethane (TAMEN) or/and TAB as ligand, and Cl, ClO4 or SCN. The complexes decompose with the evolution of heat. The decomposition route depends on the presence of ClO4 . If the ClO4 is not coordinated, it oxidizes the TAB and BAMP or TAMEN and the decomposition is explosive. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The mutual influence of the atoms on the composition of solid fluorine-containing antimony(iii) complexes formed in aqueous solutions in the (MF) x −(M′F) n−x −SbF3 (M, M′=Na, K, Rb, Cs, and NH4;n=1, 2;x=0 to 2), (KNO2) n −(KY) n −SbF3 (Y=F, Cl, SO4;n=0.5, 1), and K2SbF5−K2SbCl5 systems was investigated by elemental, X-ray, and thermogravimetric analyses and by IR and121,123Sb NQR spectroscopy. The isomorphism conditions for fluorine-containing antimony(iii) compounds resulting in the formation of complexes NaM′SbF5·1.5H2O (M′=K and Rb), K2SbF5·1.5H2O, NaCs3Sb4F16·H2O, KsbF3Cl, K2SbF2Cl3 with constant compositions, continuous M x M′2−x SbF5 (0<x<2) and limited M x M′1−x SbF4 (0.25<x<0.75; M, M′=K, Rb, Cs, and NH4) solid solutions or LiF+MSbF4 (M=Na, K, Rb, and Cs), M2SbF5+Cs2SbF5 (M=Na and K) and MSbF4+NaSbF4 (M=Rb and NH4) mechanical mixtures were determined. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 103–108, January, 1999.  相似文献   

11.
Samaria-doped ceria Ce0.8Sm0.2O2−δ (SDC) and SmFe0.7Cu0.3−x Ni x O3 have been synthesized by the sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The electrochemical synthesis of ammonia was investigated at atmospheric pressure and low temperature, using the SFCN materials as the cathode, a Nafion membrane as the electrolyte, nickel-doped SDC (Ni-SDC) as the anode and silver-platinum paste as the current collector. Ammonia was synthesized from 25 to 100°C when the SFCN materials were used as cathode, with SmFe0.7Cu0.1Ni0.2O3 giving the highest rates of ammonia formation. The maximum rate of evolution of ammonia was 1.13 × 10−8 mol·cm−2·s−1 at 80°C, and the current efficiency reached as high as 90.4%. Supported by the National Natural Science Foundation of China (Grant No. 20863007)  相似文献   

12.
Two new heterotrinuclear FeIII-MII-FeIII oxalate-bridged complexes have been prepared, and characterized, namely MII[(ox)FeIII(Salen)]2, [Salen = N,N′-ethylenebis(salicylideneiminate), ox = oxalate, M = Cu (1) and VO (2)]. Based on elemental analysis, conductivity measurements and i.r. spectra, the complexes are proposed to have an oxalate-bridged structure. The magnetic susceptibilities of the complexes were measured over the 4.2–300 K range, giving the exchange integrals J AB = −4.23 cm−1, J AA = −2.47 cm−1 for (1) and J AB = −5.42 cm−1, J AA = −1.55 cm−1 for (2). These results revealed the operation of an antiferromagnetic spin-exchange interaction between the metal ions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.

Abstract  

Three novel heterometallic microporous coordination polymers {M(Hnico)3M′} n (1, M = Co, M′ = K; 2, M = Ni, M′ = K; 3, M = Co, M′ = Na, Hnico is the anion of 2-hydroxy-nicotinic acid, where the proton is transferred from the phenolate hydroxy group to the nitrogen atom of imine pyridine ring) were synthesized by hydrothermal reaction between M(Ac)2·4H2O, M′OH and a multifunctional organic aromatic H2nico ligand and characterized by IR spectrum, elemental analysis, raman spectrum and the single crystal X-ray diffractions. In complexes 13, the M2+ ions linked three different Hnico ligand formed [M(Hnico)3] subunit which further interlinked the six-coordination M′+ cation constructed 3D network. The network topology of 13 can be simplified a rare 3D (4,4)-connected (41263) net.  相似文献   

14.
The structural geometries of three tripodal thiourea receptors, i.e. 1,3,5-triethyl-2,4,6-tris[(N′-methylthioureido)methyl]benzene (1), tris[N′-methyl-N-(2-aminoethyl)thiourea]methane (2), tris[N′-methyl-N-(2-aminoethyl)thiourea]amine (3), and their complexes with F, Cl, Br, I, NO3 , CO3 2−, SO4 2−, HSO4 , PO4 3−, HPO4 2− and H2PO4 were obtained using the density functional theory calculations. Electronic and thermodynamic properties of anion binding complexes of the receptors 1, 2 and 3 were investigated. Recognition abilities of all the receptors in terms of selectivity coefficients are reported. Intermolecular interactions in all the studied complexes occurring via multi-point hydrogen bonding were found. The receptors 1, 2 and 3 were found to be excellent selectivity for phosphate ion and their binding free energy for the phosphate ion are −292.57, −291.77 and −295.01 kcal/mol, respectively.  相似文献   

15.
Anaerobic-anoxic-aerobic sequential degradation of synthetic wastewaters   总被引:2,自引:0,他引:2  
This study was conducted in a continuous three-stage system of anaerobic (R1)-anoxic(R2)-aerobic (R3) reactors with synthetic wastewater containing phenol (1000 mg/L), chemical oxygen demand (COD) (3000 mg/L), CN (30 mg/L), SCN(400 mg/L), and NH 4 + -N (600 mg/L) as principal pollutants and well-acclimated heterogeneous microbial cultures. The final effluent was partially returned to R2 with a recycle ratio of 1. Anaerobic stage served to detoxify the feed by removing up to 80% of cyanide. Complete SCN removal and denitrification could be achieved in the anoxic stage by utilizing phenol as an internal source of carbon. Nitrification efficiency of 93% was obtained in the aerobic reactor. The results demonstrated that the three-stage system can give the desired final treated effluent quality (0 mg/L of phenol, 0.2 mg/L of CN, 210 mg/L of COD, and 20 mg/L of NH 4 + -N) and that the NO 3 -N concentration can be lowered by a higher recycle ratio.  相似文献   

16.
Low-energy CAD product-ion spectra of various molecular species of phosphatidylserine (PS) in the forms of [M−H] and [M−2H+Alk] in the negative-ion mode, as well as in the forms of [M+H]+, [M+Alk]+, [M−H+2Alk]+, and [M−2H+3Alk]+ (where Alk=Li, Na) in the positive-ion mode contain rich fragment ions that are applicable for structural determination. Following CAD, the [M−H] ion of PS undergoes dissociation to eliminate the serine moiety (loss of C3H5NO2) to give a [M−H−87] ion, which equals to the [M−H] ion of a phoshatidic acid (PA) and give rise to a MS3-spectrum that is identical to the MS2-spectrum of PA. The major fragmentation process for the [M−2H+Alk] ion of PS arises from primary loss of 87 to give rise to a [M−2H+Alk−87] ion, followed by loss of fatty acid substituents as acids (RxCO2H, x=1,2) or as alkali salts (e. g., RxCO2Li, x=1,2). These fragmentations result in a greater abundance of [M−2H+Alk−87−R2CO2H] than [M−2H+Alk−87−R1CO2H] and a greater abundance of [M−2H+Alk−87−R2CO2Li] than [M−2H+Alk−87−R1CO2Li]; while further dissociation of the [M−2H+Alk−87−R2(or 1)CO2Li] ions gives a preferential formation of the carboxylate anion at sn-1 (R1CO2) over that at sn-2 (R2CO2). Other major fragmentation process arises from differential loss of the fatty acid substituents as ketenes (loss of Rx′CH=CO, x=1,2). This results in a more prominent [M−2H+Alk−R2′CH=CO] ion than [M−2H+Alk−R1′CH=CO] ion. Ions informative for structural characterization of PS are of low abundance in the MS2-spectra of both the [M+H]+ and the [M+Alk]+ ions, but are abundant in the MS3-spectra. The MS2-spectrum of the [M+Alk]+ ion contains a unique ion corresponding to internal loss of a phosphate group probably via the fragmentation processes involving rearrangement steps. The [M−H+2Alk]+ ion of PS yields a major [M−H+2Alk−87]+ ion, which is equivalent to an alkali adduct ion of a monoalkali salt of PA and gives rise to a greater abundance of [M−H+2Alk−87−R1CO2H]+ than [M−H+2Alk−87−R2CO2H]+. Similarly, the [M−2H+3Alk]+ ion of PS also yields a prominent [M−2H+3Alk−87]+ ion, which undergoes consecutive dissociation processes that involve differential losses of the two fatty acyl substituents. Because all of the above tandem mass spectra contain several sets of ion pairs involving differential losses of the fatty acid substituents as ketenes or as free fatty acids, the identities of the fatty acyl substituents and their positions on the glycerol backbone can be easily assigned by the drastic differences in the abundances of the ions in each pair.  相似文献   

17.
Hydrogen bonding interactions between thymine nucleobase and 2′-deoxythymidine nucleoside (dT) with some biological anions such as F (fluoride), Cl (chloride), OH (hydroxide), and NO3 (nitrate) have been explored theoretically. In this study, complexes have been studied by density functional theory (B3LYP method and 6-311++G (d,p) basis set). The relevant geometries, energies, and characteristics of hydrogen bonds (H-bonds) have been systematically investigated. There is a correlation between interaction energy and proton affinity for complexes of thymine nucleobase. The nature of all the interactions has been analyzed by means of the natural bonding orbital (NBO) and quantum theory atoms in molecules (QTAIM) approaches. Donors, acceptors, and orbital interaction energies were also calculated for the hydrogen bonds. Excellent correlations between structural parameter (δR) and electron density topological parameter (ρ b) as well as between E(2) and ρ b have been found. It is interesting that hydrogen bonds with anions can affect the geometry of thymine and 2′-deoxythymidine molecules. For example, these interactions can change the bond lengths in thymine nucleobase, the orientation of base unit with respect to sugar ring, the furanose ring puckering, and the C1′–N1 glycosidic linkage in dT nucleoside. Thus, it is necessary to obtain a fundamental understanding of chemical behavior of nucleobases and nucleosides in presence of anions.  相似文献   

18.
Two complexes of general formula, [M(DABTA)]NO3 [M = CuII (1) or NiII (2), DABTA = N,N′-(4,4′-bithiazole-2,2′-diyl)diacetimidamide], have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR and electronic spectra studies and single-crystal X-ray diffraction. The crystal structures show that the two complexes have similar molecular structures in which each metal atom has a square-planar coordination environment. Hydrogen bonding interactions link each complex into a 2-D infinite network. The DNA-binding properties and cytotoxicities of the complexes were investigated. The results suggest that the two complexes can interact with DNA by intercalation, with binding affinities following the order of 1 > 2, which is consistent with their in vitro cytotoxicities.  相似文献   

19.
In vivo imaging of reactive small molecule metabolites with high spatial resolution and specificity could give clues to understanding pathophysiology of various diseases. We herein applied time of flight-secondary ion mass spectrometry (TOF-SIMS) to newly developed silver-deposited plates that were stamped on mouse tissues, and succeeded in visualization of halide (Cl, Br, and I) and pseudohalide thiocyanate (SCN) anions, a class of substrates for neutrophils/eosinophil peroxidases to produce hypohalous acids (HOX/OX mixture; X: (pseudo)halides), as well as hydrogen sulfide (H2S). Forty-micrometer frozen mouse kidney sections on cover glasses were attached to 37 °C preheated silver-deposited plates and incubated at −10 °C for 1 h. After sputter cleaning to remove surface contaminants, the plates were analyzed by TOF-SIMS to identify distribution of Br, AgBr2, I, AgI2, SCN, as well as S2− and AgS as products of tissue-derived H2S. Br, AgBr2, I, and SCN anions were mainly distributed in core regions including the inner medulla and inner stripe of the outer medulla (except for I), rather than outer regions such as the cortex and outer stripe of the outer medulla. AgI2 anion was spread over the whole kidney, although its levels were relatively low. In contrast, S2− and AgS anions were mainly present in the outer regions. To our knowledge, this is the first imaging study to reveal the distribution of (pseudo)halides and H2S in animal tissue sections.  相似文献   

20.
Two long-chain multidentate ligands: 2,9-di-(n-2′,5′,8′-triazanonyl)-1,10-phenanthroline (L1) and 2,9-di-(n-4′,7′,10′-triazaundecyl)-1,10-phenanthroline (L2) were synthesized. The hydrolytic kinetics of p-nitrophenyl phosphate (NPP) catalyzed by complexes of L1 and L2 with La(III) and Gd(III) have been studied in aqueous solution at 298 K, I = 0.10 mol · dm−3 KNO3 at pH 7.5–9.1, respectively. The study shows that the catalytic effect of GdL1 was the best in the four complexes for hydrolysis of NPP. Its kLnLH−1, k LnL and pK a are 0.0127 mol−1 dm3 s−1, 0.000022 mol−1 dm3 s−1 and 8.90, respectively. This paper expounds the result from the structure of the ligands and the properties of the metal ions, and deduces the catalysis mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号