首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The desorption of benzoic acid and stearic acid from sodium and calcium montmorillonites has been studied using thermogravimetric and differential thermogravimetric analysis. Desorption of benzoic acid from sodium montmorillonites occurs at 140 °C and from calcium montmorillonites at 179 °C. This increase in temperature is attributed to the benzoic acid bonding to the calcium in the interlayer. A lowering of the dehydroxylation temperature of montmorillonites is observed with acid adsorption. Stearic acid desorbs at 218 °C as observed by the DTG curves. The desorption pattern differs between the sodium montmorillonites and the calcium montmorillonites.  相似文献   

2.
The aim of this study is to investigate the incorporation of amino acid molecules in an acid-activated montmorillonite by means of solid characterization after the incorporation of these biomolecules. The acid activation procedure was carried out for the purpose of increasing the acid sites in the clay as well as the impurity elimination in the mineral. Cysteine, aspartic, and glutamic acids were adsorbed on montmorillonite K10 which was previously treated with a hydrochloric acid solution. The clay was put in contact with amino acid solutions at two different concentrations. Each amino acid was adsorbed at identical conditions, with the pH fixed to ensure the charge of molecules and surface clay. The solid was characterized by means of X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and nitrogen adsorption at 77 K. After the amino acid adsorption, the powders showed changes in their characteristics as well as in their thermal behavior, which depended on both the concentration and the nature of the adsorbed amino acid. The thermal decomposition and elimination of cysteine occurred at a higher temperature than the aspartic and glutamic acid; the complete removal of glutamic acid molecules was not observed at 850 °C. The differences observed in the solid characteristic after the adsorption of each amino acid were discussed. Both the thermoanalytical study and characterization of materials after the interaction with amino acid molecules can be useful to understand the adsorption mechanism of biomolecules on solid surfaces.  相似文献   

3.
The adsorption of promethazine chloride [10-(2-dimethylammonium propyl) fenothiazine chloride] and buformin hydrochloride (1-butylbiguanidine chloride) on montmorillonite was studied in previous work. The present article focuses on the desorption of these molecules from their organocomplexes in a medium of artificial intestinal juice (pH 7.0 ± 0.1) at the temperature of the human body (37 ± 0.5 °C). The desorption was investigated by kinetic studies, basal spacing measurements and Fourier transform IR studies. Important quantitative differences were observed: buformin, which adsorbed in a monolayer coverage, exhibited a very high desorption rate, whereas promethazine formed a pseudotrilayer arrangement and showed a lower dissolution rate. Received: 20 January 2001 Accepted: 8 March 2001  相似文献   

4.
Dietmar Neuhaus 《Adsorption》2013,19(6):1127-1135
The amount of adsorbed water on surfaces in an atmosphere with 100 % relative humidity can be increased by a multiple, if the surfaces are pretreated by cycles of adsorption and desorption of water. This was observed on surfaces of diamond, titanium dioxide and silicon dioxide at temperatures around 22 °C. With a sufficient number of such cycles a faster and stronger adsorption of water molecules was obtained, if compared with untreated surfaces. This also means an increased energy transfer from the atmosphere to the surface. Due to the pretreatment the amount of adsorbed water was more than three times increased. The observed effect is explained by small amounts of specially arranged water molecules, which remain on the surface after the desorption process and which support the adsorption of water. The observed effect can be used to moisten surfaces of small particles very efficiently from the gas phase.  相似文献   

5.

In this study, the preparation by grafting of amino-functionalized SBA-15 molecular sieves was carried out. Amino-functionalized molecular sieves were synthesized using a silane coupling agent and different types of amination reagents which react with modified SBA-15. These composites were characterized by FT-IR spectroscopy, X-ray diffraction at low angles, nitrogen physisorption at 77 K, and evaluated by the adsorption of CO2 and its temperature-programmed desorption—TPD. Thermal stability was investigated by TGA and DTA methods. In the view of a possible use of these amino-functionalized molecular sieves as sorbents for CO2 removal, their adsorption–desorption properties towards CO2 were also investigated by the TPD method. The mass loss of amino-functionalized molecular sieves above 215 °C was due to the oxidation and decomposition of amino propyl functional groups. This means that these composites could be used for adsorption of CO2 at temperatures below 215 °C. The adsorption of CO2 and its temperature programmed desorption using thermogravimetry were studied for amino-functionalized molecular sieves at 60 °C. The evolved gases during the adsorption–desorption of CO2 on amino-functionalized molecular sieves were identified by online mass spectrometry coupled with thermogravimetry. CO2 adsorption isotherms of functionalized samples at 60 °C showed that both the adsorption capacity (mg CO2/g adsorbent) and the efficiency of amino groups (mol CO2/mol NH2) depend on the type of amination reagents and the amount of organic compound used.

  相似文献   

6.
In this study, n-alkanoic acids (C7-COOH, C11-COOH, and C17-COOH) were immobilized onto strong basic anion-exchange membranes to form a stationary phase for hydrophobic solid phase extraction (SPE) application. The effects of feed surfactant amount, membrane counter ions, and surfactant chain length were investigated. Immobilized surfactant capacity increased with increasing feed surfactant amount, decreasing chain length, and the existence of OH counter ions. Moreover, according to TGA analysis, a surfactant bi-layer was formed on the membrane surface. Following successful surfactant immobilization, batch adsorption experiments for doxepin (feed concentration of 0.2 mg/mL) were conducted. The adsorbed doxepin amount increased with the use of longer-chain surfactants, indicating that doxepin adsorption was dominated by hydrophobic interaction with the immobilized surfactant. An optimal desorption performance was achieved using 1 M NaCl in 50% ethanol for both C7-COOH and C11-COOH-immobilized membranes. In the SPE process with one C11-COOH-immobilized membrane, a concentration factor of 2 and complete doxepin recovery was achieved from 10 mL of a 0.1 ppm load.  相似文献   

7.
A simple and straightforward method for discovery and quantification of proteins adsorbed onto delicate and sensitive membrane surfaces is presented. The adsorbed proteins were enzymatically cleaved while still adsorbed onto the membranes using an on-surface enzymatic digestion (oSED). This was followed by isobaric tagging, nanoliquid chromatography, and tandem mass spectrometry. Protein adsorption on tri-block copolymer Poloxamer 407 surface-modified microdialysis (MD) membranes were compared with protein adsorption on unmodified MD membranes. Ventricular cerebrospinal fluid (vCSF) kept at 37 °C was used as sample matrix. In total, 19 proteins were quantified in two biological replicates. The surface-modified membranes adsorbed 33% less proteins than control membranes and the most abundant proteins were subunits of hemoglobin and clusterin. The adsorption of clusterin on the modified membranes was on average 36% compared to control membranes. The most common protein in vCSF, Albumin, was not identified adsorbed to the surface at all. It was also experimentally verified that oSED, in conjunction with tandem mass spectrometry can be used to quantify femtomole amounts of proteins adsorbed on limited and delicate surfaces, such as MD membranes. The method has great potential and can be used to study much more complex protein adsorption systems than previously reported.  相似文献   

8.
Influence of surfactant on gas bubble stability   总被引:2,自引:0,他引:2  
Gas-bubble stability is achieved either by a reduction in the Laplace pressure or by a reduction in the permeability of the gas-liquid interface. Although insoluble surfactants have been shown definitively in many studies to lower the permeability of the gas-liquid interface and hence increase the resistance to interfacial mass transfer, remarkably little work has been done on the effects of soluble surfactants. An experimental system was developed to measure the effect of the soluble surfactant dodecyl trimethylammonium bromide on the desorption and absorption of carbon dioxide gas through a quiescent planar interface. The desorption experiments conformed to the model of non-steady-state molecular diffusion. The absorption experiments, however, produced an unexpected mass transfer mechanism, with surface renewal, probably because of instability in the density gradient formed by the carbon dioxide. In general, the soluble surfactant produced no measurable reduction in the rate of interfacial mass transfer for desorption or absorption. This finding is consistent with the conclusion of Caskey and Barlage that soluble surfactants produce a significantly lower resistance to interfacial mass transfer than do insoluble surfactants. The dynamic adsorption and desorption of the surfactant molecules at the gas-liquid interface creates short-term vacancies, which presumably permit the unrestricted transfer of the gas molecules through the interface. This surfactant exchange does not occur for insoluble surfactants. Gas bubbles formed in the presence of a high concentration of soluble surfactant were observed to dissolve completely, while those formed in the presence of the insoluble surfactant stearic acid did not dissolve easily, and persisted for very long periods. The interfacial concentration of stearic acid rises during bubble dissolution, as it is insoluble, and must eventually achieve full monolayer coverage and a state of compression, lowering the permeability of the interface. Thus, insoluble surfactants or hydrophobic impurities from solid surfaces may account for increased bubble stability.  相似文献   

9.
Summary High resolution thermogravimetric analysis has been used to study the thermal decomposition of montmorillonite modified with octadecyltrimethylammonium bromide. Thermal decomposition occurs in 4 steps.The first step of mass loss is observed from ambient to 100°C temperature range and is attributed to dehydration of adsorbed water. The second step of mass loss occurs between 87.9 to 135.5°C temperature range and is also attributed to dehydration of water hydrating metal cations such as Na+. The third mass loss occurs between 179.0 and 384.5°C; it is assigned to the loss of surfactant. The fourth step is ascribed to the loss of OH units due to dehydroxylation of the montmorillonite and takes place between 556.0 and 636.3°C temperature range. These TG steps are related to the arrangement of the surfactant molecules intercalating the montmorillonite. Changes in the basal spacing of the clay with surfactant are followed by X-ray diffraction. Thermal analysis provides an indication of the stability of the organo-clay.  相似文献   

10.
The adsorption of a polar (water) and a non-polar (n-octane) liquid on silica gels, modified by adsorption of proteins, has been studied by thermal analysis. Silica gels with physically adsorbed BSA and ovalbumin layers were used. Thermodesorption energies were determined from Q-TG and Q-DTG curves recorded under quasi-equilibrium conditions. Significant differences in liquid desorption were observed from the surfaces due to heterogeneous changes (energetic and geometrical) as a result of modification. These results are compared with those obtained for the samples heated at 160°C for 1 h.  相似文献   

11.
High surface area porous W/Sn oxide nanomaterials were prepared via water/oil based (W/O) emulsion. Tungstic acid solution was generated by cation exchange of sodium tungstate in acidic Dowex resin. The acid was then mixed with a clear homogeneous aqueous N-cetyl trimethyl ammonium bromide (CTAB) solution followed by a slow addition of 0.2 M SnCl4 solution. The mixture was stirred for 24 h and then subjected to slow calcination at 500 °C. The prepared materials were characterized using SEM-EDX, BET surface area, and sorption of nitrogen and water. Fourier transform infrared spectroscopy (FTIR) was used to characterize the surface acidic properties using pyridine vapor as a probe. The materials were then tested toward the Dimethyl methylphosphonate (DMMP) adsorption at various temperatures using infrared spectroscopy. At elevated temperatures, the desorption of DMMP from WO3 and SnO2 surfaces results in forming methyl phosphonate that strongly bounds on the metal oxide surfaces. In contrast, the FTIR spectra showed that the adsorbed dimethyl methylphosphonate (DMMP) on the mixed W/Sn oxide powders can be molecularly desorbed without any decomposition.  相似文献   

12.
An extracellular lipase-producing fungus was isolated from oil-rich soil. This fungus belongs to the genus Rhizopus and clades with Rhizopus oryzae. Lipase was purified to homogeneity from this novel fungal source using ammonium sulphate precipitation followed by Q-Sepharose chromatography. The extracellular lipase was purified 8.6–fold, and enzymatic properties were studied. The molecular mass of the purified enzyme was estimated to be 17 kD by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and 16.25 kD by matrix-assisted laser desorption ionization/time-of-flight analysis. The native molecular mass was estimated to be 17.5 kD by gel filtration, indicating the protein to be monomer. The optimum pH and temperature for the enzyme catalysis were 7.0 °C and 40 °C, respectively. Enzyme was stable in pH range 6.0–7.0 and retains 95–100% activity when incubated at 50 °C for 1 h. The pI of the purified lipase was 4.2. Enzyme was stable in the organic solvents such as ethanol, hexane and methanol for 2 h. Purified enzyme was used for transesterification of oleic acid in the presence of ethanol for production of oleic acid ethyl ester with a conversion efficiency of 66% after 24 h at 30 °C.  相似文献   

13.
Thermogravimetric (TG), differential thermal analysis (DTA) and thermal degradation kinetics, FTIR and X-ray diffraction (XRD) analysis of synthesized glycine–montmorillonite (Gly–MMT) and montmorillonite bound dipeptide (Gly–Gly–MMT) along with pure Na–MMT samples have been performed. TG analysis at the temperature range 25–250 °C showed a mass loss for pure Na–MMT, Gly–MMT and Gly–Gly–MMT of about 8.0%, 4.0% and 2.0%, respectively. DTA curves show the endothermic reaction at 136, 211 and 678 °C in pure Na–MMT whereas Gly–MMT shows the exothermic reaction at 322 and 404 °C and that of Gly–Gly–MMT at 371 °C. The activation energies of the first order thermal degradation reaction were found to be 1.64 and 9.78 kJ mol−1 for Gly–MMT and Gly–Gly–MMT, respectively. FTIR analyses indicate that the intercalated compounds decomposed at the temperature more than 250 °C in Gly–MMT and at 250 °C in Gly–Gly–MMT.  相似文献   

14.
Interactions of oxygen with silver powders have been studied with a combination of angle-resolved ESCA and volumetric adsorption. Three states of adsorbed oxygen, i.e., atomically adsorbed oxygen, dissolved oxygen, and surface oxide, are characterized by 0(1s)-ESCA peaks at binding energies of 530.2, 532.0, and 529.3 eV respectivcly. The ESCA studies also suggest that atomically adsorbed oxygen dissolves into the subsurface of silver powders at temperatures above 100 °C, and then transforms into oxide (Ag2O) at 175 °C. Adsorbed oxygen on the silver powders was partially desorbed at temperatures higher than 180 °C. The transformation and desorption information obtained from ESCA satisfactorily explains the variation of the adsorption isotherm with temperature obtained from the volumetric adsorption of oxygen on Ag/SiO2 catalysts.  相似文献   

15.
The effect of emulsion process formulation ingredients on the morphology, structure, and properties of polyvinyl chloride (PVC) powder has been considered in this study. PVC powder was extracted with ethanol and films were obtained by solvent casting from tetrahydrofurane. Characterization of powders, films, and ethanol extract was performed through FTIR spectroscopy, DSC, AFM, SEM, EDX analysis, methylene blue, and nitrogen adsorption. PVC powder was composed of spheres of a large particle size range from 10 nm to 20 μm as shown by SEM. The specific surface area of the PVC powder was determined as 16 and 12 m2 g−1 from methylene blue adsorption at 25 °C and from N2 adsorption at −196 °C, respectively. AFM indicated the surface roughness of the films obtained by pressing the particles was 25.9 nm. Density of PVC powder was determined by helium pycnometry as 1.39 g cm−3. FTIR spectroscopy indicated that it contained carbonyl and carboxylate groups belonging to additives such as surface active agents, plasticizers, and antioxidants used in production of PVC. These additives were 1.6% in mass of PVC as determined by ethanol extraction. EDX analysis showed PVC particles surfaces were coated with carbon-rich materials. The coatings had plasticizer effect since, glass transition temperature was lower than 25 °C for PVC powder and it was 80 °C for ethanol extracted powders as found by using differential scanning calorimetry. These additives from polymerization process made PVC powder more thermally stable as understood from Metrom PVC thermomat tests as well.  相似文献   

16.
A type of Nb2O5⋅3H2O was synthesized and its phosphate removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The phosphate adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model with which the maximum P adsorption capacity was estimated to be 18.36 mg-P g−1. The peak appearing at 1050 cm−1 in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The positive values of both ΔH° and ΔS° suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. ΔG° values obtained were negative indicating a spontaneous adsorption process. A phosphate desorbability of approximately 68% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. The immobilization of phosphate probably occurs by the mechanisms of ion exchange and physicochemical attraction. Due to its high adsorption capacity, this type of hydrous niobium oxide has the potential for application to control phosphorus pollution.  相似文献   

17.
The influence of the 2-, 3-, and 4-OH phenols on the type of interaction with Co-exchanged montmorillonite and thermal properties of these materials were studied. The results of XRD, IR, and thermal (TG, DTG) analysis show that organic species are intercalated into the interlayer space of montmorillonite. Thermal decomposition in the temperature interval 20?C700?°C of studied samples with 2- and 3-hydroxyphenol proceeds in three steps (the release of adsorbed H2O molecules, combustion/desorption of protonated hydroxy phenols and dehydroxylation), while the sample with 4-hydroxyphenol decompose in four steps (the new peak at ~222?°C corresponds to directly coordinated organic species). The effect of different position of the hydroxyl groups on the phenol ring on the thermal decomposition is evident.  相似文献   

18.
The cetyltrimethylammonium hydroxide (C16TMAOH) solution was proposed for the preparation of organoclays. Montmorillonite clay was acid activated at different acid/clay (a/c) (in mass) ratios, then treated with alkaline (sodium hydroxide) solution before being reacted with C16TMAOH solution. The acid activation caused a reduction in the number of cation exchange sites, and hence improved the exfoliation of the silicate sheets at higher pH values. The basal spacing increased significantly from 2.20 to 4.01 nm, and depended on the a/c ratios. The acid-activated clays with a/c ratios greater than 0.3 adsorbed significant amounts of C16TMA cations with a basal spacing of 4.01 nm compared with the non-acid-activated montmorillonite (2.51 nm). Meanwhile, the treatment of NaOH solution yielded clays with similar properties to that of the raw used clay. The XRF data, FT-IR, and 29Si MAS-NMR techniques confirmed that the resulting amorphous silica during the acid activation was dissolved, and accompanied by a dramatical reduction in the surface areas. Similar amounts of C16TMA cations were adsorbed, i.e., close to 1 mmol g?1, with a single basal spacing of 2.52 nm, independently of the treated acid-activated clays. The in-situ powder XRD studies revealed that an increase of the basal spacing to 4.20 nm was observed at intermediate temperatures ranging from 50 to 150 °C for organo-acid-activated clays with basal spacing of 4.01 nm, while a continuous decrease of the basal spacing was observed for organoclays with a basal spacing of 2.52 nm. At higher temperatures greater than 250 °C, the decomposition of the surfactant occurs, and the basal spacing decreases to a value of about 1.4 nm.  相似文献   

19.
The prerequisites and prospects for creating a new generation of nanosized membrane reactors are considered. For the first time, hydrogenation reactions take place in ceramic membrane pores with hydrogen adsorbed beforehand in mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) formed on the internal pore surface. It is shown for Trumem microfiltration membranes with D avg ∼130 nm that oxidation reactions of CO on a Cu0.03Ti0.97O2 ± δ catalyst and the oxidative conversion of methane into synthesis gas and light hydrocarbons on La + Ce/MgO are considerably enhanced when they occur in membranes. Regularities of hydrogen adsorption, storage, and desorption in nanosized membrane reactors are investigated through OCNTG formation in Trumem ultrafiltration membrane pores with D avg = 50 and 90 nm and their saturation with hydrogen at a pressure of 10–13 MPa. It is shown that the amount of adsorbed hydrogen reaches 14.0% of OCNTG mass. Using thermogravimetric analysis in combination with mass-spectrometric analysis, hydrogen adsorption in OCNTG is first determined and its desorption is found to proceed at atmospheric pressure at a temperature of ∼175°C. It is shown that adsorbed hydrogen affects the transport properties of the membranes, reducing their efficiency with respect to liquids by 4–26 times. This is indirect confirmation of its high activity, due apparently the dissociative mechanism of adsorption.  相似文献   

20.
NIR spectroscopy has been used to measure the adsorption of p-nitrophenol on untreated montmorillonite and surfactant exchanged montmorillonite. p-Nitrophenol is characterised by an intense NIR band at 8890 cm(-1) which shifts to 8840 cm(-1) upon adsorption on organoclay. The band was not observed for p-nitrophenol adsorbed on untreated montmorillonite. Both the montmorillonite and the surfactant modified montmorillonite are characterised by NIR bands at 7061 and 6791 cm(-1). The organoclay is characterised by two prominent bands at 5871 and 5667 cm(-1) assigned to the fundamental overtones of the mid-IR bands at 2916 and 2850 cm(-1). A band at 6017 cm(-1) is attributed to the p-nitrophenol adsorbed on the organoclay. The band is not observed for the montmorillonite with adsorbed p-nitrophenol. It is concluded that p-nitrophenol is adsorbed to significantly greater amounts on the organoclay compared with the untreated montmorillonite. The implication is that organoclays are most useful for removing organic molecules from water through adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号