首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of star-shaped poly(acrylic acid) having various numbers of arms (5, 8, and 21) and a strong cationic polyelectrolyte, viz., poly( N-ethyl-4-vinylpyridinium bromide), was examined at pH 7 by means of turbidimetry and dynamic light scattering. Mixing aqueous solutions of the oppositely charged polymeric components was found to result in phase separation only if their base-molar ratio Z = [N+]/[COO (-) + COOH] exceeds a certain critical value ZM ( ZM < 1); this threshold value is determined by the number of arms of the star-shaped polyelectrolyte and the ionic strength of the surrounding solution. At Z < ZM, the homogeneous aqueous mixtures of the oppositely charged polymeric components contain two types of complex species clearly differing in their sizes, with the fractions of these species appearing to depend distinctly on the number of arms of the star-shaped poly(acrylic acid), the base-molar ratio of the oppositely charged polymeric components in their mixtures, and the ionic strength of the surrounding solution. The small complex species (major fraction) are assumed to represent the particles of the water-soluble interpolyelectrolyte complex whereas the large complex species (minor fraction) are considered to be complex aggregates.  相似文献   

2.
The physicochemical properties of quaternized poly(amidoamine) dendrimers (generation 4) with methyl or octyl groups and of their mixtures with sodium dodecyl sulfate (SDS) in aqueous solutions have been investigated using several techniques including surface tension, fluorescence of pyrene, and dynamic light scattering. In the single systems of the dendrimers, the dendrimer with octyl groups shows lower surface tension and lower micropolarity than the dendrimer with methyl groups. The hydrodynamic radii of two quaternized poly(amidoamine) dendrimers are considerably large, indicating the formation of aggregates. In the mixed systems of quaternized poly(amidoamine) dendrimers and SDS, the dendrimer with octyl groups-SDS mixed system shows very low surface tension and low micropolarity even in the presence of extremely low SDS concentration compared to those of the dendrimer with methyl groups-SDS mixed system. Maximum turbidity for both systems is observed at around the mixed molar ratio of dendrimer:SDS=1:1.5 where distinct changes have also been confirmed by surface tension, fluorescence of pyrene, and electrical conductivity measurements.  相似文献   

3.
The ability of solid N-alkyl quaternized poly(4-vinylpyridine) with hexyl, octyl and decyl bromide for the retention of chromate and dichromate forms of Cr(VI) in aqueous solutions is studied. The retention of Cr(VI) was investigated by batch equilibrium procedure and this study was supported by UV-vis spectrophotometry, infrared (IR) spectroscopy and thermal analysis (glass transition temperature and thermal degradation). The retention of Cr(VI) was possible in the range of concentrations between 1 × 10−6 and 1 × 10−3 mol/L and it was dependent on the length of the polyelectrolyte side aliphatic chain. Thermogravimetric analysis (TGA) indicated that solid phase, (N-alkyl quaternized poly(4-vinylpyridine), with Cr(VI) (P4VPyC8-Cr(VI)) is slightly more stable than P4VPyC8 in absence of Cr(VI). Differential scanning calorimetric (DSC) measurements indicate that the segmental movements are restricted due to the presence of chromate and/or dichromate ions in the solid phase.  相似文献   

4.
In the present paper, the effect of different neutral polymers on the self-assemblies of hyperbranched poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) has been investigated at different ionization degrees of the polyelectrolyte molecules. The investigated uncharged polymers were poly(ethyleneoxide), poly(vinylpyrrolidone) and dextran samples of different molecular mass. Dynamic light scattering and electrophoretic mobility measurements demonstrate that the high molecular mass PEO or PVP molecules adsorb considerably onto the surface of the PEI/SDS nanoparticles. At appropriate concentrations of PVP or PEO, sterically stabilized colloidal dispersions of the polyelectrolyte/surfactant nanoparticles with hydrophobic core and hydrophilic corona can be prepared. These dispersions have considerable kinetic stability at high ionic strengths where the accelerated coagulation of the PEI/SDS nanoparticles results in precipitation in the absence of the neutral polymers. In contrast, the addition of dextran does not affect considerably the kinetic stability of PEI/SDS mixtures because of its low adsorption affinity towards the surface of the polyelectrolyte/surfactant nanoparticles.  相似文献   

5.
The formation of polymer colloid complexes based on chitosan and sodium dodecyl sulfate in aqueous ethanol media was studied. The infl uence of the composition of water-ethanol mixtures on the parameters of surfactant binding with chitosan, on the stability of the complexes, on the phase state of the system, and on the colloid-chemical properties of the complexes was analyzed. Addition of small (up to 34 vol %) amounts of ethanol to water enhances the intensity of binding of sodium dodecyl sulfate with the polyelectrolyte and promotes formation of insoluble associates.  相似文献   

6.
Morphological change of a micelle of poly(styrene)-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-PVP-PEO) polymer was induced by binding sodium dodecyl sulfate (SDS) to the PVP block in acidic aqueous solutions. The change in the size of SDS/PS-PVP-PEO complexes was detected by dynamic light scattering measurements and atomic force microscopy, and the binding of SDS was confirmed by zeta-potential measurements. When the micelle was free from SDS in acidic aqueous solutions, the hydrodynamic diameter of the micelle was 216 nm, reflecting the extended conformation of the PVP block due to the repulsion between protonated pyridine units. As the cationic PVP block was electrically neutralized with anionic SDS, the diameter was gradually reduced concomitant with the decrease in zeta-potential and finally reached 175 nm when the PVP block was completely neutralized. The decrease in the diameter shows the morphological change of the PVP block from extended to shrunken forms. Further addition of SDS did not cause the changes of the diameter nor zeta-potential. This indicates that SDS was not bound to the PS-PVP-PEO polymer after the PVP block was fully neutralized and that the hydrophobic binding of SDS to the polymer was negligible due to the low concentration of SDS.  相似文献   

7.
A new type of single-ion conductor with fixed cation was synthesized by spontaneous anionic polymerization of 4-vinylpyridine in the presence of short polyethylene oxide ( PEO ) chains as alkylating agents. These comblike polymers have low Tgs and are amorphous with the shorter PEO s. Their conductivities are unaffected by the nature of the anion ( Br , ClO 4, and tosylate) and are controlled by the free volume and the mobility of the pendant cation. By comparison of the results at constant free volume, it is shown that the charge density decreases with the increasing length of pendant PEO demonstrating that PEO acts only as a plasticizing agent. Best conductivity results (σ = 10−5 S cm−1 at 60°C) are obtained with PEO side chains of molecular weight 350. With this sample, the conductivity in the presence of various amounts of added salt (LiTFSI) was studied. A best value of 10−4 S cm−1 at 60°C is obtained with a molar ratio EO/Li of 10. It is shown that, over the range of examined concentrations (0.2–1.3 mol Li kg−1), the reduced conductivity σr/c increases linearly with increasing salt concentration showing that the ion mobility increases continuously. Such behavior is quite unusual since in this concentration range a maximum is generally observed with PEO systems. To interpret this result and by analogy with the behavior of this type of polymer in solution, it is proposed that the conformation of these polymers in the solid state is segregated with the P4VP skeleton more or less confined inside the dense coils surrounded by the PEO side chains. Under the influence of the increasing salt concentration, this microphase separation vanishes progressively: The LiTFSI salt exchanges with the tosylate anions and acts as a miscibility improver agent. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2719–2728, 1997  相似文献   

8.
In order to determine the stereoregularity of poly(4-vinylpyridine), 4-vinylpyridine-β,β-d2 was synthesized from 4-acetylpyridine. The 1H-NMR spectra of the deuterated and nondeuterated polymers were measured and analyzed. From the 1H-NMR spectra of poly(4-vinylpyridine-β,β-d2), triad tacticity can be obtained, while the 1H-NMR spectra of nondeuterated poly(4-vinylpyridine) give the fraction of isotactic triad. The 13C-NMR spectra of poly(4-vinylpyridine) were also observed, and the spectra of C4 carbon of polymers were assigned by the pentad tacticities. The fraction of isotactic triad of poly(2-vinylpyridine) and poly(4-vinylpyridine) obtained under various polymerization conditions were determined. The radical polymerization and anionic polymerizations with phenylmagnesium bromide and n-butyllithium as catalysts of 4-vinylpyridine gave atactic polymers.  相似文献   

9.
Solution properties of copolymers [C(MA-Py)x] of methacrylic acid and 4-vinylpyridine and intermacromolecular complexes of poly(methacrylic acid) (PMAA) and poly(4-vinylpyridine) (PVP) in the presence or absence of a proton-accepting water-soluble polymer such as poly(ethylene glycol) (PEG) in water/methanol mixed solvent are studied by potentiometric titration, turbidity and viscosity methods. These copolymers behave like polyampholytes and their solubilities are strongly dependent with pH changes. The pH regions where they are precipitated around their isoelectric points are narrower than those of the intermacromolecular complex of PMAA with PVP. The polyampholyte can form an intermacromolecular complex with PEG in acidic solution but this complex is soluble in the medium.  相似文献   

10.
The self-assembly of poly(allylamine hydrochloride) (PAH) through an electrostatic interaction with sodium dodecyl sulfate (SDS) was explored. PAH itself showed no self-assembly in water. A light scattering study demonstrated that PAH formed monodispersed spherical aggregates in water in the presence of SDS. The hydrodynamic diameter of the aggregates was estimated to be ca. 170 nm based on the cumulant analysis. The scattering intensity and UV absorbance at 258 nm based on the aggregation increased with an increase in the molar ratio of SDS to the allylamine hydrochloride unit (SDS/AH), indicating an increase in the number of aggregates. On the other hand, the hydrodynamic diameter of aggregates was constant, i.e., independent of the SDS/AH ratio. The constant size of the aggregates in spite of the increase in the number of aggregates suggests the formation of the micellar aggregates by the intramolecular association through an electrostatic interaction.  相似文献   

11.
The effect of ethanol on the interaction between the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic polymer poly(vinylpyrrolidone) (PVP) has been investigated using a range of techniques including surface tension, fluorescence, electron paramagnetic resonance (EPR), small-angle neutron scattering (SANS), and viscosity. Surface tension and fluorescence studies show that the critical micelle concentration (cmc) of the surfactant decreases to a minimum value around 15 wt % ethanol; that is, it follows the cosurfactant effect. However, in the presence of PVP, the onset of the interaction, denoted cmc(1), between the surfactant and the polymer is considerably less dependent on ethanol concentration. The saturation point, cmc(2), however, reflects the behavior of the cmc in that it decreases upon addition of ethanol. This results in a decrease in the amount of surfactant bound to the polymer [C(bound) = cmc(2) - cmc] at saturation. The viscosity of simple PVP solutions depends on ethanol concentration, but since SANS studies show that ethanol has no effect on the polymer conformation, the changes observed in the viscosity reflect the viscosity of the background solvent. There are significant increases in bulk viscosity when the surfactant is added, and these have been correlated with the polymer conformation extracted from an analysis of the SANS data and with the amount of polymer adsorbed at the micelle surface. Competition between ethanol and PVP to occupy the surfactant headgroup region exists; at low ethanol concentration, the PVP displaces the ethanol and the PVP/SDS complex resembles that formed in the absence of the ethanol. At higher ethanol contents, the polymer does not bind to the ethanol-rich micelle surface.  相似文献   

12.
The binding mechanism of poly(diallyldimethylammonium chloride), PDAC, and sodium dodecyl sulfate, SDS, has been comprehensively studied by combining binding isotherms data with microcalorimetry, zeta potential, and conductivity measurements, as well as ab initio quantum mechanical calculations. The obtained results demonstrate that surfactant-polymer interaction is governed by both electrostatic and hydrophobic interactions, and is cooperative in the presence of salt. This binding results in the formation of nanoparticles, which are positively or negatively charged depending on the molar ratio of surfactant to PDAC monomeric units. From microcalorimetry data it was concluded that the exothermic character of the interaction diminishes with the increase in the surfactant/polymer ratio as well as with an increase in electrolyte concentration.  相似文献   

13.
Mixed surfactant-polyelectrolyte multilayer films were fabricated by both ionic self-assembly and spin assembly. A polycation [PEI = poly(ethylenimine)] was deposited from a dilute solution, while a polyanion (PAZO = poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]) was deposited from a mixture containing a fixed concentration of polyanion and various concentrations of the anionic surfactant sodium dodecyl sulfate (SDS). Coadsorption of SDS and PAZO onto PEI layers was observed using both deposition methods and attributed to strong PEI-SDS interactions and entropic factors. Increasing the concentration of SDS resulted in films containing progressively less adsorbed PAZO. No further reduction in the amount of adsorbed PAZO was observed above the SDS critical micelle concentration. We attribute the film growth behavior to a fast adsorption of SDS onto PEI, followed by a slower adsorption of PAZO onto the remaining unoccupied binding sites. We observe that SDS interpenetrates throughout the PAZO and PEI layers, increasing the surface hydrophobicity of both. We observed similar behavior for both ionically self-assembled and spin-assembled systems.  相似文献   

14.
The swelling behavior of poly(ethylene oxide) (PEO) gels in aqueous solutions of sodium dodecyl sulfate (SDS) with and without NaCl was investigated. In the absence of NaCl, PEO gels with different degrees of cross-linking began to swell from a concentration lower than the critical micelle concentration (cmc) of SDS, then showed sigmoidal enhancements of swelling in a higher SDS concentration region until the degrees of swelling reached maximum values. The SDS concentration at which the swelling began to appear was in reasonable agreement with the critical aggregation concentration (cac) value reported for the aqueous PEO system. For the cases where NaCl was present, the swelling behavior of PEO gel was different from that when NaCl was absent in the following way. The concentrations where the swelling begins to appear, and hence those where the degree of swelling rises steeply, decreased with an increase in NaCl concentration. The ultimate degrees of swelling at higher concentration regions also decreased with an increase in the NaCl concentration. The lowering of the SDS concentrations at which the PEO gel began to swell is in line with the decreases in the cmc of SDS solutions containing NaCl and also with the decreases in the cac of PEO solution. Electronic Publication  相似文献   

15.
The interactions of the negatively charged achiral molecular micelle, poly (sodium N-undecanoyl sulfate) (poly-SUS), with four different proteins using intrinsic and extrinsic fluorescence spectroscopic probes, are studied. A comparison of poly-SUS with the conventional surfactant, sodium dodecyl sulfate (SDS), and the monomeric species, SUS, is also reported. In this work, we observed that poly-SUS preferentially binds to acidic proteins, exhibiting positive cooperativity at concentrations less than 1 mM for all proteins studied. Moreover, it appears that the hydrophobic microdomain formed through polymerization of the terminal vinyl group of the monomer, SUS, is largely responsible for the superior binding capacity of poly-SUS. From these results, we conclude that the interactions of poly-SUS with the acidic proteins are predominantly hydrophobic and postulate that poly-SUS would produce superior interactions relative to SDS at low concentrations in polyacrylamide gel electrophoresis (PAGE). As predicted, use of poly-SUS allowed separation of the His-tagged tumor suppressor protein, p53, at sample buffer concentrations as low as 0.08% w/v (2.9 mM), which is 24 times lower than required for SDS in the standard reducing PAGE protocol. This work highlights the use of poly-SUS as an effective surfactant in 1D biochemical analysis.  相似文献   

16.
The surface behavior of poly(4-vinylpyridine) quaternized with tetradecyl bromide (P4VPC(14)) as function of the quaternization degree was studied. The percentage of vinylpyridine moieties quaternized was found to be 35 to 75%. Surface pressure-area isotherms (pi-A) at the air-water interface were determined. The polymer monolayers show particular shapes at different quaternization degrees. In order to get information about the hydrophobicity degree of the polymeric systems, the surface energy (SE), and their dispersion and polar contributions, gamma(D) and gamma(P) respectively, measurements of the contact angle (CA) with water, bromobenzene, and cis-decalin were performed. The results obtained are dependent on the quaternization percentage of the functionalized polymers. At high quaternization degree, hysteresis in the pi-A diagrams was observed. The change in the P4VPC(14) molecular organization in the monolayer was also investigated during the compression and expansion processes. During these processes the monolayer was monitored by Brewster angle microscopy (BAM). For several cycles, all compression curves and all expansion curves showed a common intersection point. We have tried to describe the P4VPC(14) molecular organization at the air-water interface by molecular dynamic simulation (MDS). The results are also discussed in terms of the effect of the counterions and water on the stability of the system over the more packed region.  相似文献   

17.
Conformational properties of isotactic poly(2-hydroxyethyl methacrylate) (PHEMA) have been studied in mixtures of water and several aliphatic alcohols by viscometry and fluorometry. The highest fluorescence intensity of auramine has been detected in aqueous isotactic PHEMA solution compared with several aliphatic alcohol systems. Upon aliphatic alcohol addition, there was the decrease of fluorescence intensity of auramine. As the number of aliphatic group of alcohol increases, the decrease of fluorescence intensity of auramine has been pronounced. And the sharp increases of the reduced viscosity of isotactic PHEMA in water-alcohol solvents were observed in the lower region of alcohol volume percentage with the increasing number of aliphatic group of alcohol. Nevertheless, the sharp increase of the reduced viscosity of isotactic PHEMA in ethyleneglycol-water solvent was obtained even at a low-volume percentage region of ethyleneglycol at which compact structures exist. Therefore, we consider that the increase of viscosity at this region is due to the hydrophilic side group of polymer-solvent interaction, forming hydrogen bonds. The experimental results suggest that compact structures of isotactic PHEMA in aqueous solution are caused by hydrophobic interactions by methyl group of polymer backbone, and the hydrophobic interaction by adding alcohols. Finally, our study brings the fact that the solvating sites of alcohols on the isotactic PHEMA molecule are strongly influenced by the number of hydroxyl and aliphatic group in alcohols.  相似文献   

18.
The interaction of sodium dodecyl sulfate (SDS) in aqueous solution with poly(N-vinyl-2-pyrrolidone) (M(w) = 55,000 g/mol) in the presence of poly(ethylene glycol) (M(w) = 8000 g/mol) is investigated by electrical conductivity, zeta potential measurements, viscosity measurements, fluorescence spectroscopy, and small-angle X-ray scattering (SAXS). The results indicate that SDS-polymer interaction occurs at low surfactant concentration, and its critical aggregation concentration is fairly dependent on polymer composition. The polymer-supported micelles have average aggregation numbers dependent on surfactant concentration, are highly dissociated when compared with aqueous SDS micelles, and have zeta potentials that increase linearly with the fraction of PVP at constant SDS concentration. The analysis of the SAXS measurements indicated that the PVP/PEG/SDS system forms surface-charged aggregates of a cylindrical shape with an anisometry (length to cross-section dimension ratio) of about 3.0.  相似文献   

19.
20.
Interaction of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers with anionic sodium dodecyl sulfate (SDS) has been investigated in aqueous solution. Formation of mixed micelles has been confirmed by surface tension measurements, whereas the influence of the surfactant on the copolymer self-assembling has been studied by measurement of the 1H NMR self-diffusion coefficients and by small-angle neutron scattering. As a rule, the surfactant decreases the heterogeneity of the micellar structures formed by the copolymer in water. Moreover, increasing the content of SDS results in the increasingly more important extension of the poly(ethylene oxide) (PEO) corona chains and the copolymer micelle deaggregation. The stability of the micelles against SDS increases with the length of the hydrophobic block. Preliminary two-dimensional NMR measurements with nuclear Overhauser enhancement have confirmed the spatial vicinity between SDS and the constitutive blocks of the copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号