首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Rituximab was successively labeled with 177Lu-lutetium chloride. 177Lu chloride was obtained by thermal neutron flux (4 × 1013 n cm−2 s−1) of natural Lu2O3 sample with a specific activity of 2.6–3 GBq/mg. The macrocyclic bifunctional chelating agent, N-succinimidyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NHS) was prepared at 25 °C using DOTA, N-hydroxy succinimide (NHS) in CH2Cl2. DOTA-rituximab was obtained by the addition of 1 mL of a rituximab pharmaceutical solution (5 mg/mL, in phosphate buffer, pH 7.8) to a glass tube pre-coated with DOTA-NHS (0.01–0.1 mg) at 25 °C with continuous mild stirring for 15 h. Radiolabeling was performed at 37 °C in 24 h. Radio-thin layer chromatography showed an overall radiochemical purity of >98% at optimized conditions (specific activity = 444 MBq/mg, labeling efficacy; 82%). The final isotonic 177Lu-DOTA-rituximab complex was checked by gel electrophoresis for structure integrity control. Radio-TLC was performed to ensure that only one species was present after filtration through a 0.22 μm filter. Preliminary biodistribution studies in normal rats were carried out to determine complex distribution of the radioimmunoconjugate up to 168 h. The biodistribution data were in accordance with other antiCD20 radioimmunoconjugates already reported.  相似文献   

2.
Pyrroloquinoline quinone (PQQ), an essential nutrient, antioxidant, redox modulator and nerve growth factor found in a class of enzymes called quinoproteins, was labeled with 99mTc by using stannous fluoride (SnF2) method. Radiolabeling qualification, quality control and characterization of 99mTc-PQQ and its biodistribution studies in mice were performed and discussed. Effects of pH values, temperature, time and reducing agents concentration on the radiolabeling yield were investigated. The quality control procedure of 99mTc-PQQ was determined by thin layer chromatography (TLC), radio high-performance liquid chromatography (RHPLC) and paper electrophoresis methods. The average radiolabeling yield was 94 ± 1% under optimum conditions of 0.99 mg of PQQ, 30 μg of SnF2, 0.5 mg of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and 18.5 MBq of Na99mTcO4 at pH 6 and 25 °C with a response volume of 1 ± 0.1 mL. 99mTc-PQQ was stable and anionic. Lipid–water partition coefficient of 99mTc-PQQ was −1.49 ± 0.16. The pharmacokinetics parameters of 99mTc-PQQ were t 1/2α = 18.16 min, t 1/2β = 100.45 min, K 12 = 0.013 min−1, K 21 = 0.017 min−1, K e = 0.016 min−1, AUC (area under the curve) = 1040.78 ID% g−1 min and CL (plasma clearance) = 0.096 mL min−1. The dual-exponential equation was Y = 10.88e−0.038t  + 5.21e−0.0069t . The biodistribution of 99mTc-PQQ was studied in ICR (Institute for Cancer Research 7701 Burhelme Are., Fox Chase, Philadelphia, PA 1911 USA) mice. In vitro autoradiographic studies clearly showed that the 99mTc-PQQ radioactivity accumulated predominantly in the hippocampus and cortex, which had a high density of N-methyl-d-aspartate Receptor (NMDAR). The enrichment can be blocked by NMDAR redox modulatory site antagonists-ebselen (EB) and 99mTc-PQQ is therefore a promising candidate for the molecular imaging of NMDAR. To date, however, there have been no studies characterizing 99mTc-PQQ.  相似文献   

3.
The dimercaptosuccinic acid metronidazole ester (DMSAMe) was synthesized and radiolabeled with 99mTc to form the 99mTc-DMSAMe complex in high yield. The radiochemical purity of the 99mTc-DMSAMe complex was over 90%, as measured by TLC and by HPLC, without any notable decomposition at room temperature over a period of 6 h. Its partition coefficient indicated that it was a lipophilic complex. The tumor cell experiment and the biodistribution in mice bearing S 180 tumor showed that the 99mTc-DMSAMe complex had a certain hypoxic selectivity and accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time, suggesting it would be a possible tumor hypoxia imaging agent.  相似文献   

4.
For detection of hypoxic tumor tissue, all radiotracers synthesized until now, are based on the concept that cellular uptake is being controlled by diffusion. As a new approach, we chose the concept to have the tracer hypothetically transported into the cells by well known carrier systems like the amino acid transporters. For this purpose, radiosynthesis of O-[2-[18F]fluoro-3-(2-nitro-1H-imidazole-1yl)propyl]tyrosine ([18F]FNT]) was carried out from methyl 2-(benzyloxycarbonyl)-3-(4-3-(2-nitro-1H-imidazol-1-yl)-2-(tosyloxy)propoxy) phenyl)propanoate via no-carrier-added nucleophilic aliphatic substitution. After labelling, 81 ± 0.9% of labelled intermediate i.e. methyl 2-(benzyloxycarbonyl)-3-(4-(2-[18F]fluoro-3-(2-nitro-1H-imidazole-1-yl)propoxy) phenyl)propanoate was obtained at 140 °C. At the end of radiosynthesis, [18F]FNT was obtained in an overall radiochemical yield of 40 ± 0.9% (not decay corrected) within 90 min in a radiochemical purity of >98% in a formulation ready for application in the clinical studies for PET imaging of hypoxia.  相似文献   

5.
This article presents, 122Sb (T 1/2 = 2.723 days, I β- = 97.59%) was produced via the natSn(p,xn) nuclear process at the AMIRS (Cyclone-30, IBA, Belgium). The electrodeposition experiments were carried out by potassium stannate trihydrate (K2Sn(OH)6) and potassium hydroxide. The optimum conditions of the electrodeposition of tin were as follows: 40 g/L natSn, 20 g/L KOH, 115 g/L K2Sn(OH)6, DC current density of 5 A/dm2 with a bath temperature of 75 °C. The electroplated Tin-target was irradiated with 26.5 MeV protons at current of 180 μA for 20 min. Solvent extraction of no-carrier-added 122Sb from irradiated Tin-natural target hydrochloric solution was investigated using di-n-butyl ether (C8H18O). Yields of about 3.61 MBq/μAh were experimentally obtained.  相似文献   

6.
[67Ga]labeled tetraphenyl porphyrin ([67Ga]-TPP) was prepared using freshly prepared [67Ga]GaCl3 and tetraphenyl porphyrin (TPPH2) for 30–60 min at 25 °C (radiochemical purity: >97 ± 1% ITLC, >98 ± 0.5% HPLC, specific activity: 13–14 GBq/mmol). Stability of the complex was checked in final formulation and human serum for 24 h. The partition coefficient was calculated for the compound (log P 1.89). The biodistribution of the labeled compound in vital organs of wild-type rats was studied using scarification studies and SPECT imaging up to 24 h. A detailed comparative pharmacokinetic study performed for 67Ga cation and [67Ga]-TPP. The complex is mostly washed out from the circulation through kidneys and can be an interesting tumor imaging/targeting agent due to low liver uptake and rapid excretion through the urinary tract.  相似文献   

7.
A practical and reliable HPLC method was used for the determination of 2-[4-N-(2-hydroxyethyl)-1-piperazinyl]-N′-ethanesulfonic acid (HEPES) content in the 68Ga-labeled [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-1-Nal3-octreotide (DOTANOC). Linearity of this method was observed in a concentration range of 0.01–10 mg mL−1 and the quantitative limit (signal to noise = 11) was determined as 10 μg mL−1. The HEPES concentration in the final products of 68Ga-DOTANOC was typically lower than the detection limit. Pure water and HEPES buffer as reaction medium were investigated using various activities of gallium-68. It was demonstrated that the presence of HEPES buffer consistently furnished very high radiochemical purity of 68Ga-DOTANOC, which remained stable for several hours post-labeling. Evidence is provided that in addition to its role as a buffer, HEPES also functions as a radioprotectant agent.  相似文献   

8.
172Lu due to its suitable (T 1/2 = 6.7 days) and high detection sensitivity, is used as a radiotracer in different fields. 172Lu appears to be suitable as a long-lived rare-earth tracer for compound labelling and biodistribution studies. In the present study, excitation functions via 172Yb(p,n)172Lu, natYb(p,xn)172Lu, 172Yb(d,2n)172Lu and natYb(d,xn)172Lu reactions were calculated by ALICE/91, ALICE/ASH and TALYS-1.2 codes. Deposition of natYb2O3 on Cu substrate was carried out via sedimentation method for the production of 172Lu. Cementation separation process and liquid–liquid extraction (LLX) of no-carrier-added (nca) radiolutetium from irradiated ytterbium(III)oxide target hydrochloric solution was described using Na(Hg) amalgam, α-hydroxyisobutyric acid (α-HIB) and di-(2-ethylhexyl)phosphoric acid (HDEHP).  相似文献   

9.
PET with 68Ga from the TiO2- or SnO2- based 68Ge/68Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity (68Ge vs. 68Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts of 68Ge activity is produced by eluting the 68Ge/68Ga generators and residues from PET chemistry. Since clearance level of 68Ge activity in waste may not exceed 10 Bq/g, as stated by European Directive 96/29/EURATOM, our purpose was to reduce 68Ge activity in solution from >10 kBq/g to <10 Bq/g; which implies the solution can be discarded as regular waste. Most efficient method to reduce the 68Ge activity is by sorption of TiO2 or Fe2O3 and subsequent centrifugation. The required 10 Bq per mL level of 68Ge activity in waste was reached by Fe2O3 logarithmically, whereas with TiO2 asymptotically. The procedure with Fe2O3 eliminates ≥90% of the 68Ge activity per treatment. Eventually, to simplify the processing a recirculation system was used to investigate 68Ge activity sorption on TiO2, Fe2O3 or Zeolite. Zeolite was introduced for its high sorption at low pH, therefore 68Ge activity containing waste could directly be used without further interventions. 68Ge activity containing liquid waste at different HCl concentrations (0.05–1.0 M HCl), was recirculated at 1 mL/min. With Zeolite in the recirculation system, 68Ge activity showed highest sorption.  相似文献   

10.
The long-lived rare earth isotopes 151Sm (90 years, β max = 76.3 keV) and 147Pm (2.62 years, β max = 224.6 keV) are low-yield fission products that generally require lengthy separation procedures to isolate and count by their beta emissions. We will describe novel liquid scintillation counting techniques using radioactive tracers to determine radiochemical yields from an environmental matrix. The recovery of 151Sm is determined from the alpha decay (2.25 MeV) of 147Sm in the natural Sm carrier and is in excellent agreement with the gravimetric recovery. The 147Pm recovery is determined by the use of 145Pm (17.7 years, EC) tracer, custom-produced at LANL using an isotopically enriched target of 144Sm. We have determined the 145Pm recovery both from the 37.4 keV kα1 X-ray, and the electron-capture emissions by LSC. A comparison of these recovery methods is presented.  相似文献   

11.
Radiocomplexation of fleroxacin (FXN) with technetium-99m and its characterization in terms of in vitro stability in saline and serum solutions, in vitro binding with live and heat-killed Escherichia coli, and biodistribution in male Wistar rats (MWR) artificially infected with live and heat-killed E. coli was studied. The 99mTc-FXN complex showed a radiochemical purity (RCP) yield of 98.10 ± 0.24% at 30 min using 125 μg of stannous fluoride, 74 MBq of sodium pertechnetate, and 2 mg of FXN. The complex was found to be more than 90% stable up to 4 h after constitution in normal saline. In serum, the emergence of 16.50% undesirable species was observed within 16 h of incubation at 37 °C. The 99mTc-FXN complex showed saturated in vitro binding with E. coli with a maximum value of 65.00% at 90 min. A fivefold increase in uptake of the complex was noted in the infected when compared with the inflamed and normal muscle of the MWR infected with live E. coli. The stable radiochemical profile in saline and serum, saturated in vitro binding with E. coli and increased uptake in the infected muscle, confirmed the potential of the 99mTc-FXN complex as an E. coli infection imaging agent.  相似文献   

12.
Summary To control virtually the toxic compounds and to improve quality control of the solution of 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG), the products of its autoradiolysis were analyzed by high-performance liquid chromatography with electrospray mass spectrometric and radiometric detectors (HPLC/MS/RAD), thin layer chromatography on TLC silica plate and HPTLC on amino modified silica plate. Except Kryptofix2.2.2, glucose and fluoride anion, no by-products and impurities were observed by LC/MS analysis of fresh 2-[18F]FDG samples. The analysis performed in the time interval of 6 to 48 hours after the end of 2-[18F]FDG synthesis indicated that the activity of the autoradiolysis products separated by HPLC did not exceed 1.3%. As the main autoradiolysis products of 3.3 . 10-5 to 4.4 . 10-5M 2-[18F]FDG solution of original specific activity 0.5-1.5 GBq . cm-3 were established: arabinose - 2.8 μM (G= 0.07/100 eV), gluconic and glucuronic acids 1.8-0.5 μM (G =0.01-0.05/100 eV), arabinose and araburonic acids occurred under 0.5 μM concentration at residual glucose contents about 0.14 mM. Radiation chemical yields of active products were calculated from molar activity of 2-[18F]FDG and the percentage of their activity: 0.5% radiochemical yield of 2-[18F]fluoroglucuronic acid corresponds to the G = 0.004/100 eV and 0.3% yield of 2-[18F]fluorogluconic acid issues G = 0.003/100 eV.  相似文献   

13.
Improved radionuclide generator include a substantially insoluble salt of a radioactive parent which may be directly packed in column for subsequent elution of the daughter radionuclide. An improved 188Re generator was prepared by reacting a radioactive tungsten (188W) as parent radionuclide incorporated with aluminum chloride to obtain an insoluble radioactive aluminum tungstate matrix. The investigated matrix was characterized on the basis of the chemical composition, IR, thermal analysis and mechanical stabilities. The factors affecting the elution performance were studied such as influence of pH, molar ratio and drying temperature. From the obtained data, the molar ratio W:Al was 1.5:1 at pH = 4, the matrix dried at 105 °C for 2 h. Chromatographic and multichannel analysis has been currently used to investigate the radiochemical and radionuclidic purity respectively on eluted 188Re. An elution yield more than 80%, with radiochemical purity <98% and radionuclidic purity <99% with a 188W break through >10−4% of the column. The Al+3 and W contents value were about 2 and 3 μg/mL eluate. The obtained data approved the stability of the prepared generator and its suitability for medical application.  相似文献   

14.
Copper-64 was produced as a by-product of 55Co via 64Ni(p,n)64Cu by 15 MeV proton bombardment of natNi resulting in a thick target yield of 5.31 MBq/μAh (143.5 μCi/μAh) and a radiochemical separation yield of 95% (radionuclide purity >97% after 25 hours of bombardment). Rituximab was successively labeled with [64Cu]-CuCl2. N-succinimidyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-NHS) was prepared at 25 °C using DOTA and N-hydroxy succinimide (NHS) in CH2Cl2 followed by the addition of 1 ml of a Rituximab pharmaceutical solution. Radiolabeling was performed at 37 °C in 3 hours. Radio thin-layer chromatography showed an overall radiochemical purity of 90–95% at optimized conditions (specific activity=30 GBq/mg, labeling efficacy; 82%) using various chromatography systems. The final isotonic 64Cu-DOTA-Rituximab complex was passed through a 0.22 μm filter and checked by gel electrophoresis for radiolysis control. Stability of the final product was checked in the formulation and in presence of human serum at 37 °C.  相似文献   

15.
In vivo imaging of tumours using radiolabelled somatostatin (SST) analogues has become an accepted clinical tool in oncology. HYNIC-Tyr3 octreotide and Tyr3 octreotide were synthesized by FMOC solid-phase peptide synthesis using a semi-automated synthesizer. These were analyzed and purified by RP-HPLC, mass spectroscopy, IR spectroscopy, 1H NMR and 13C NMR. The prochelator 6-BOC-HYNIC was also synthesised and characterised indigenously. HYNIC-Tyr3 octreotide was labelled with 99mTc using Tricine and EDDA as coligand by SnCl2 method. Labelling with 99mTc was performed at 100 °C for 15 min and radiochemical analysis by ITLC and HPLC methods. The radiochemical purity of the complex was over 98% and log p value was found to be −1.27 ± 0.12. The stability of radiolabelled peptide complex was checked at 37 °C up to 24 h. Blood clearance and protein-binding study was also performed. In vivo biodistribution studies in rat showed uptake of 99mTc-HYNIC-TOC in kidney than any other organs. The blood clearance was faster with rapid excretion through kidneys and relatively low uptake in liver.  相似文献   

16.
The activated carbon was prepared by using corncobs and characterized by sorpatometer for using as an exchanger material to separate the generated 113mIn from 113Sn and 124,125Sb. To optimize the separation process, the different parameters like acetone percentage, HCl concentration were studied. The exchange capacity of Sn(IV) is 7.6 meq/g onto the activated carbon and the elution efficiency of 113mIn > 80% by using 10 mL of 0.2 M HCl-80% acetone with flow rate 1 mL/min. The radionuclidic purity and radiochemical purity of the eluted 113mIn were examined and clarified the presence of 124,125Sb with relatively high level as radio impurities, so further separation was carried out by using Dowex 1×8 as an anion exchanger below the activated carbon matrix on the same separation column to adsorb the 113Sn and 124,125Sb, which escape from the activated carbon matrix.  相似文献   

17.
A method for the separation of no-carrier-added arsenic radionuclides from the bulk amount of proton-irradiated GeO2 targets as well as from coproduced radiogallium was developed. The radionuclides 69Ge and 67Ga produced during irradiation of GeO2 were used as tracers for Ge and Ga in the experiments. After dissolution of the target the ratio of As(III) to As(V) was determined via thin layer chromatography (TLC). The extraction of radioarsenic by different organic solvents from acid solutions containing alkali iodide was studied and optimized. The influence of the concentration of various acids (HCl, HClO4, HNO3, HBr, H2SO4) as well as of KI was studied using cyclohexane. The optimum separation of radioarsenic was achieved using cyclohexane with 4.75 M HCl and 0.5 M KI and its back-extraction with a 0.1% H2O2 solution. The separation leads to high purity radioarsenic containing no radiogallium and <0.001% [69Ge]Ge. The overall radiochemical yield is 93 ± 3%. The practical application of the optimized procedure in the production of 71As and 72As is demonstrated and batch yields achieved were in the range of 75–84% of the theoretical values.  相似文献   

18.
Linezolid is the first of new class of antibiotics, the oxazolidinones, and exhibits activity against many gram-positive organisms, including vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus, and penicillin-resistant Streptococcus pneumoniae. Aim of the study: Linezolid was to label with I-131 and potential of the radiolabeled antibiotic was to investigate in inflamed rats with Saureus (S. aureus) and sterile inflamed rats with turpentine oil. Linezolid was labeled with I-131 by iodogen method. Biodistribution of [131I]linezolid was carried out in bacterial inflamed and sterile inflamed rats. Radiolabeling yield of [131I]linezolid was determined as 85 ± 1% at pH 2. After injecting of [131I]linezolid into bacterial inflamed and sterile inflamed rats, radiolabeled linezolid was rapidly removed from the circulation via the kidneys. Binding of [131I]linezolid to bacterial inflamed muscle (T/NT = 77.48 at 30 min) was five times higher than binding to sterile inflamed muscle (T/NT = 14.87 at 30 min) of rats. [131I]linezolid showed good localization in bacterial inflamed tissue. It was demonstrated that [131I]linezolid can be used to detect S. aureus inflammation in rats.  相似文献   

19.
1-H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO), is the most used hypoxia-imaging agent in oncology and we have recently reported a fully automated procedure for its synthesis using the Nuclear Interface FDG module and a single neutral alumina column for purification. Using 1-(2′-nitro-1′-imidazolyl)-2-O-tetra-hydropyranyl-3-O-toluenesulfonylpropanediol (NITTP) as the precursor, we have investigated the yield of [18F]FMISO using different reaction times, temperatures, and the amount of precursor. The overall yield was 48.4 ± 1.2% (n = 3), (without decay correction) obtained using 10 mg NITTP with the radio-fluorination carried out at 145 °C for 3 min followed by acid hydrolysis for 3 min at 125 °C in a total synthesis time of 32 ± 1 min. Increasing the precursor amount to 25 mg did not improve the overall yield under identical reaction conditions, with the decay uncorrected yield being 46.8 ± 1.6% (n = 3), but rather made the production less economical. It was also observed that the yield increased linearly with the amount of NITTP used, from 2.5 to 10 mg and plateaued from 10 to 25 mg. Radio-fluorination efficiency at four different conditions was also compared. It was also observed by radio thin layer chromatography (radio-TLC) that the duration of radio-fluorination of NITTP, not the radio-fluorination temperature favoured the formation of labeled thermally degraded product, but the single neutral alumina column purification was sufficient enough to obtain [18F]FMISO devoid of any radiochemical as well as cold impurities.  相似文献   

20.
16α-18F-fluoroestradiol (18F-FES) has been developed as a promising positron emission tomography (PET) imaging agent for targeting estrogen receptor positive (ER+) breast cancer in the clinical trial. However, the radiosynthesis of 18F-FES often requires two steps and tough experimental conditions. Therefore, a new estradiol derivative (18F-AmBF3-ES) was prepared by an efficient one-step 18F-radiolabeling method. The tracer was obtained in high yield (~65%) and excellent radiochemical purity (>98%) within 30 min. The uptake rate of 18F-AmBF3-ES in ER+ cells was about 3.5% at 30 min. The results suggested that the tracer may be a potential PET imaging agent for ER+ breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号