首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we develop patch‐wise local projection‐stabilized conforming and nonconforming finite element methods for the convection–diffusion–reaction problems. It is a composition of the standard Galerkin finite element method, the patch‐wise local projection stabilization, and weakly imposed Dirichlet boundary conditions on the discrete solution. In this paper, a priori error analysis is established with respect to a patch‐wise local projection norm for the conforming and the nonconforming finite element methods. The numerical experiments confirm the efficiency of the proposed stabilization technique and validate the theoretical convergence rates.  相似文献   

2.
A new defect‐correction method based on the pressure projection for the stationary Navier‐Stokes equations is proposed in this paper. A local stabilized technique based on the pressure projection is used in both defect step and correction step. The stability and convergence of this new method is analyzed detailedly. Finally, numerical examples confirm our theory analysis and validate high efficiency and good stability of this new method.  相似文献   

3.
This article first recalls the results of a stabilized finite element method based on a local Gauss integration method for the stationary Stokes equations approximated by low equal‐order elements that do not satisfy the inf‐sup condition. Then, we derive general superconvergence results for this stabilized method by using a local coarse mesh L2 projection. These supervergence results have three prominent features. First, they are based on a multiscale method defined for any quasi‐uniform mesh. Second, they are derived on the basis of a large sparse, symmetric positive‐definite system of linear equations for the solution of the stationary Stokes problem. Third, the finite elements used fail to satisfy the inf‐sup condition. This article combines the merits of the new stabilized method with that of the L2 projection method. This projection method is of practical importance in scientific computation. Finally, a series of numerical experiments are presented to check the theoretical results obtained. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 28: 115‐126, 2012  相似文献   

4.
In this article, we propose a two‐level finite element method to analyze the approximate solutions of the stationary Navier‐Stokes equations based on a stabilized local projection. The local projection allows to circumvent the Babuska‐Brezzi condition by using equal‐order finite element pairs. The local projection can be used to stabilize high equal‐order finite element pairs. The proposed method combines the local projection stabilization method and the two‐level method under the assumption of the uniqueness condition. The two‐level method consists of solving a nonlinear equation on the coarse mesh and solving a linear equation on fine mesh. The nonlinear equation is solved by the one‐step Newtonian iteration method. In the rest of this article, we show the error analysis of the lowest equal‐order finite element pair and provide convergence rate of approximate solutions. Furthermore, the numerical illustrations coincide with the theoretical analysis expectations. From the view of computational time, the results show that the two‐level method is effective to solve the stationary Navier‐Stokes equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

5.
Highly localized pointwise error estimates for a stabilized Galerkin method are provided for second-order non-selfadjoint elliptic partial differential equations. The estimates show a local dependence of the error on the derivative of the solution u and weak dependence on the global norm. The results in this paper are an extension of the previous pointwise error estimates for the self-adjoint problems. In order to provide pointwise error estimates in the presence of the first-order term in the differential equations, we prove that the stabilized Galerkin solution is higher order perturbation to the Ritz projection of the true solutions. Then, we proceed to obtain pointwise estimates using the so-called discrete Green’s function. Application to error expansion inequalities and a posteriori error estimators are briefly discussed.  相似文献   

6.
对Oseen方程提出一种新的局部投影稳定化有限元方法,并且速度和压力采用inf-sup稳定的非协调有限元空间逼近.局部投影稳定化项仅加在子网格上(H≥h);与RFB方法相比,该方法稳定性项简单,并且可以克服对流占优.最后,通过实验证明,数值结果和理论结果完全一致.  相似文献   

7.
In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.  相似文献   

8.
In this paper, several projection method based preconditioners for various incompressible flow models are studied. In the derivations of these projection method based preconditioners, we use three different types of the approximations of the inverse of the Schur complement, i.e., the exact inverse, the Cahouet–Chabard type approximation and the BFBt type approximation. We illuminate the connections and the distinctions between these projection method based preconditioners and those related preconditioners. For the preconditioners using the Cahouet–Chabard type approximation, we show that the eigenvalues of the preconditioned systems have uniform bounds independent of the parameters and most of them are equal to 1. The analysis is based on a detailed discussion of the commutator difference operator. Moreover, these results demonstrate the stability of the staggered grid discretization and reveal the effects of the boundary treatment. To further illustrate the effectiveness of these projection method based preconditioners, numerical experiments are given to compare their performances with those of the related preconditioners. Generalizations of the projection method based preconditioners to other saddle point problems are also discussed.  相似文献   

9.
Based on two‐grid discretizations, a two‐parameter stabilized finite element method for the steady incompressible Navier–Stokes equations at high Reynolds numbers is presented and studied. In this method, a stabilized Navier–Stokes problem is first solved on a coarse grid, and then a correction is calculated on a fine grid by solving a stabilized linear problem. The stabilization term for the nonlinear Navier–Stokes equations on the coarse grid is based on an elliptic projection, which projects higher‐order finite element interpolants of the velocity into a lower‐order finite element interpolation space. For the linear problem on the fine grid, either the same stabilization approach (with a different stabilization parameter) as that for the coarse grid problem or a completely different stabilization approach could be employed. Error bounds for the discrete solutions are estimated. Algorithmic parameter scalings of the method are also derived. The theoretical results show that, with suitable scalings of the algorithmic parameters, this method can yield an optimal convergence rate. Numerical results are provided to verify the theoretical predictions and demonstrate the effectiveness of the proposed method. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 425–444, 2017  相似文献   

10.
分析了Rd,d=2,3维不可压缩流Stokes问题低次元稳定有限体积方法,它主要利用局部压力投影方法对两种流行但不满足inf-sup条件的有限元配对(P_1-P_0和P_1-P_1)在有限体积方法的框架下进行稳定;利用有限元与有限体积方法的等价性进行有限体积方法理论分析.结果表明不可压缩流Stokes问题在f∈Hd,d=2,3维不可压缩流Stokes问题低次元稳定有限体积方法,它主要利用局部压力投影方法对两种流行但不满足inf-sup条件的有限元配对(P_1-P_0和P_1-P_1)在有限体积方法的框架下进行稳定;利用有限元与有限体积方法的等价性进行有限体积方法理论分析.结果表明不可压缩流Stokes问题在f∈H1情况下,本文方法得到的解与稳定有限元方法解之间具有O(h1情况下,本文方法得到的解与稳定有限元方法解之间具有O(h2)阶超收敛阶结果,且稳定有限体积方法取得了与稳定有限元方法相同的收敛速度,与稳定有限元方法比较,稳定有限体积方法计算简单高效,同时保持物理守恒,因此在实际应用中具有很好的潜力。  相似文献   

11.
For generalized eigenvalue problems, we consider computing all eigenvalues located in a certain region and their corresponding eigenvectors. Recently, contour integral spectral projection methods have been proposed for solving such problems. In this study, from the analysis of the relationship between the contour integral spectral projection and the Krylov subspace, we conclude that the Rayleigh–Ritz-type of the contour integral spectral projection method is mathematically equivalent to the Arnoldi method with the projected vectors obtained from the contour integration. By this Arnoldi-based interpretation, we then propose a block Arnoldi-type contour integral spectral projection method for solving the eigenvalue problem.  相似文献   

12.
Numerical Algorithms - An a priori analysis for a generalized local projection stabilized finite element solution of the Darcy equations is presented in this paper. A first-order nonconforming...  相似文献   

13.
将Matthies,Skrzypacz和Tubiska的思想从线性的Oseen方程拓展到了非线性的Navier-Stokes方程,针对不可压缩的定常Navier-Stokes方程,提出了一种局部投影稳定化有限元方法.该方法既克服了对流占优,又绕开了inf-sup条件的限制.给出的局部投影空间既可以定义在两种不同网格上,又可以定义在相同网格上.与其他两级方法相比,定义在同一网格空间上的局部投影稳定化格式更紧凑.在同一网格上,除了给出需要bubble函数来增强的逼近空间外,还特别考虑了两种不需要用bubble函数来增强的新的空间.基于一种特殊的插值技巧,给出了稳定性分析和误差估计.最后,还列举了两个数值算例,进一步验证了理论结果的正确性.  相似文献   

14.
This article considers a stabilized finite element approximation for the branch of nonsingular solutions of the stationary Navier–Stokes equations based on local polynomial pressure projection by using the lowest equal-order elements. The proposed stabilized method has a number of attractive computational properties. Firstly, it is free from stabilization parameters. Secondly, it only requires the simple and efficient calculation of Gauss integral residual terms. Thirdly, it can be implemented at the element level. The optimal error estimate is obtained by the standard finite element technique. Finally, comparison with other methods, through a series of numerical experiments, shows that this method has better stability and accuracy.  相似文献   

15.
A combination method of two-grid discretization approach with a recent finite element variational multiscale algorithm for simulation of the incompressible Navier–Stokes equations is proposed and analyzed. The method consists of a global small-scale nonlinear Navier–Stokes problem on a coarse grid and local linearized residual problems in overlapped fine grid subdomains, where the numerical form of the Navier–Stokes equations on the coarse grid is stabilized by a stabilization term based on two local Gauss integrations at element level and defined by the difference between a consistent and an under-integrated matrix involving the gradient of velocity. By the technical tool of local a priori estimate for the finite element solution, error bounds of the discrete solution are estimated. Algorithmic parameter scalings are derived. Numerical tests are also given to verify the theoretical predictions and demonstrate the effectiveness of the method.  相似文献   

16.
1引言 定常N-s方程是流体力学中一类非常重要的方程,而经典的混合有限元方法要求有限元空间组合满足B-B条件.这一条件限制了工程中常用的低阶有限元空间如:P1/P1,P,/Po等.为了去掉LBB条件限制,产生了一种新的方法--稳定化方法(也成CBB方法).1988年,F.Brezzi和J.Douglas.Jr对线性的Stokes方程建立了一种稳定化格式([2]).对于低阶的有限元应用压力投影稳定项构造了一种稳定化格式,并给出了格式的解存在唯一性,且给出了几种有限元的算例.  相似文献   

17.
We compare the relative performances of two iterative schemes based on projection techniques for the solution of large sparse nonsymmetric systems of linear equations, encountered in the numerical solution of partial differential equations. The Block–Symmetric Successive Over-Relaxation (Block-SSOR) method and the Symmetric–Kaczmarz method are derived from the simplest of projection methods, that is, the Kaczmarz method. These methods are then accelerated using the conjugate gradient method, in order to improve their convergence. We study their behavior on various test problems and comment on the conditions under which one method would be better than the other. We show that while the conjugate-gradient-accelerated Block-SSOR method is more amenable to implementation on vector and parallel computers, the conjugate-gradient accelerated Symmetric–Kaczmarz method provides a viable alternative for use on a scalar machine.  相似文献   

18.
We consider conforming finite element (FE) approximations of the time‐dependent, incompressible Navier–Stokes problem with inf‐sup stable approximation of velocity and pressure. In case of high Reynolds numbers, a local projection stabilization method is considered. In particular, the idea of streamline upwinding is combined with stabilization of the divergence‐free constraint. For the arising nonlinear semidiscrete problem, a stability and convergence analysis is given. Our approach improves some results of a recent paper by Matthies and Tobiska (IMA J. Numer. Anal., to appear) for the linearized model and takes partly advantage of the analysis in Burman and Fernández, Numer. Math. 107 (2007), 39–77 for edge‐stabilized FE approximation of the Navier–Stokes problem. Some numerical experiments complement the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1224–1250, 2015  相似文献   

19.
In this article, a two‐level variational multiscale method for incompressible flows based on two local Gauss integrations is presented. We solve the Navier–Stokes problem on a coarse mesh using finite element variational multiscale method based on two local Gauss integrations, then seek a fine grid solution by solving a linearized problem on a fine grid. In computation, we use the two local Gauss integrations to replace the projection operator without adding any variables. Stability analysis is performed, and error estimates of the method are derived. Finally, a series of numerical experiments are also given, which confirm the theoretical analysis and demonstrate the efficiency of the new method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

20.
A local convergence result for an abstract descent method is proved. The sequence of iterates is attracted by a local (or global) minimum, stays in its neighborhood, and converges within this neighborhood. This result allows algorithms to exploit local properties of the objective function. In particular, the abstract theory in this paper applies to the inertial forward–backward splitting method: iPiano—a generalization of the Heavy-ball method. Moreover, it reveals an equivalence between iPiano and inertial averaged/alternating proximal minimization and projection methods. Key for this equivalence is the attraction to a local minimum within a neighborhood and the fact that, for a prox-regular function, the gradient of the Moreau envelope is locally Lipschitz continuous and expressible in terms of the proximal mapping. In a numerical feasibility problem, the inertial alternating projection method significantly outperforms its non-inertial variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号